
CS201
Introduction to Programming

Important subjective

Lec 23 - Pre-processor

1. What is the purpose of the pre-processor in C programming?
Answer: The pre-processor performs pre-processing tasks such as handling pre-processor 
directives and including header files before the code is compiled.

2. What is a macro in C programming?
Answer: A macro is a pre-processor directive that defines a text replacement that is expanded 
by the pre-processor.

3. How is a macro defined in C programming?
Answer: A macro is defined using the #define directive followed by the macro name and its 
replacement text.

4. What is the purpose of the #include directive in C programming?
Answer: The #include directive is used to include header files that contain function prototypes, 
constant definitions, and other declarations needed in the source code.

5. What is the purpose of the #ifdef directive in C programming?
Answer: The #ifdef directive is used to include or exclude blocks of code depending on whether 
a certain macro has been defined.

6. How is a macro undefined in C programming?
Answer: A macro is undefined using the #undef directive followed by the macro name.

7. What is conditional compilation in C programming?
Answer: Conditional compilation is the process of including or excluding blocks of code based 
on certain conditions such as the target platform or the compiler being used.

8. What is the purpose of the #pragma directive in C programming?
Answer: The #pragma directive is used to specify implementation-specific behavior or provide 
hints to the compiler.

9. What are the potential risks of using pre-processor directives excessively in C 
programming?
Answer: Overuse of pre-processor directives can lead to code that is hard to read, maintain, and 
debug. It can also make the code more error-prone.

10. Can pre-processor directives be used in languages other than C?
Answer: Yes, many programming languages have pre-processor directives, including C++, 
Objective-C, and Fortran.



Lec 24 - Memory Allocation

1. What is dynamic memory allocation?
Answer: Dynamic memory allocation is the process of allocating memory to a program during 
runtime. In C programming, it is done using functions like malloc(), calloc(), and realloc().

2. What is the difference between stack memory and heap memory?
Answer: Stack memory is allocated during compile time, whereas heap memory is allocated 
during runtime. Stack memory is limited in size and is used for static memory allocation, while 
heap memory is used for dynamic memory allocation.

3. What is the purpose of the malloc() function in C programming?
Answer: The malloc() function is used to dynamically allocate memory to a program during 
runtime.

4. What is a memory leak?
Answer: A memory leak is a situation where memory that has been allocated is not properly 
deallocated, leading to the gradual depletion of available memory.

5. What is the purpose of the calloc() function in C programming?
Answer: The calloc() function is used to dynamically allocate memory to a program during 
runtime, and it initializes the memory to 0.

6. What is the purpose of the free() function in C programming?
Answer: The free() function is used to deallocate memory that has been allocated using 
malloc(), calloc(), or realloc().

7. What is the potential danger of not properly deallocating memory in a program?
Answer: The potential danger is that memory leaks can occur, causing the program to 
eventually run out of available memory.

8. What is memory fragmentation?
Answer: Memory fragmentation is a situation where the available memory becomes fragmented 
and is no longer contiguous, making it difficult to allocate large blocks of memory.

9. What is the purpose of the realloc() function in C programming?
Answer: The realloc() function is used to resize an existing block of memory that has been 
allocated using malloc(), calloc(), or realloc().

10. What is the maximum amount of memory that can be allocated using malloc() in C 
programming?
Answer: The maximum amount of memory that can be allocated using malloc() depends on the 
system and available memory, but it is typically limited to a few gigabytes.



Lec 25 - Lecture Overview

1. What is a lecture overview?
A lecture overview is a brief summary or introduction of the topics that will be covered in a 
particular lecture or presentation. It provides students with an idea of what they can expect to 
learn during the lecture.

2. Why is a lecture overview important?
A lecture overview is important because it helps students prepare for the lecture and stay 
focused during the presentation. It provides an outline of the key concepts, themes, or theories 
that will be discussed, which can help students better understand the material.

3. Who typically provides the lecture overview?
The lecturer typically provides the lecture overview.

4. What are some examples of information that might be included in a lecture overview?
A lecture overview might include key concepts, relevant background information, examples, and 
case studies.

5. How can a lecture overview help students stay engaged during the lecture?
A lecture overview can help students stay engaged during the lecture by highlighting key 
concepts and providing a roadmap for the presentation. This can help students understand the 
organization of the material and stay focused on the important points.

6. How can a lecturer benefit from providing a lecture overview?
A lecturer can benefit from providing a lecture overview by improving student engagement and 
feedback on their teaching style. It can also help save time during the lecture by providing a 
roadmap for the presentation.

7. What are some common formats for a lecture overview?
Common formats for a lecture overview include a written summary, a PowerPoint presentation, 
and a video recording.

8. How can students use a lecture overview to prepare for an exam?
Students can use a lecture overview to prepare for an exam by reviewing the key concepts and 
themes that were discussed during the lecture. This can help them better understand the 
material and retain the information for the exam.

9. Is a lecture overview the same as lecture notes?
No, a lecture overview is not the same as lecture notes. Lecture notes are more detailed and 
comprehensive, whereas a lecture overview provides a brief summary of the lecture content.

10. Can a lecture overview be used for online lectures?
Yes, a lecture overview can be used for online lectures. It can be provided in a written format or 
as a video introduction to the lecture.



Lec 26 - Classes and Objects

1. What is a constructor in a class?
Answer: A constructor is a special method in a class that is called when an object of that class is 
created. It is used to initialize the attributes of the object.

2. What is inheritance in object-oriented programming?
Answer: Inheritance is the process of creating a new class from an existing class. The new 
class inherits the attributes and methods of the existing class, and can add its own attributes 
and methods as well.

3. What is encapsulation in object-oriented programming?
Answer: Encapsulation is the practice of hiding the internal workings of an object from the 
outside world, and exposing only a public interface for interacting with the object.

4. What is polymorphism in object-oriented programming?
Answer: Polymorphism is the ability of objects of different classes to be treated as if they were 
of the same class. This allows for more flexible and dynamic code.

5. What is a method in a class?
Answer: A method is a function defined within a class, which can access and manipulate the 
data attributes of an object of that class.

6. What is an instance variable in a class?
Answer: An instance variable is a variable defined within a class, and is specific to each object 
created from that class.

7. What is a static variable in a class?
Answer: A static variable is a variable defined within a class, but is shared by all objects of that 
class.

8. What is the difference between a class and an object?
Answer: A class is a blueprint or template for creating objects, while an object is an instance of 
a class.

9. What is the difference between a method and a function?
Answer: A method is a function defined within a class, and is associated with objects of that 
class. A function, on the other hand, is not associated with any particular class or object.

10. What is the relationship between a superclass and a subclass?
Answer: A subclass is a new class created from an existing class (the superclass), and inherits 
the attributes and methods of the superclass. The subclass can add its own attributes and 
methods as well.



Lec 27 - Classes And Objects

1. What is the difference between a class and an object in object-oriented programming?
Answer: A class is a blueprint or template that defines the attributes and behaviors of objects, 
while an object is an instance of a class.

2. What is the purpose of encapsulation in object-oriented programming?
Answer: The purpose of encapsulation is to hide the internal details of an object from the 
outside world and provide a well-defined interface for interacting with the object.

3. What is inheritance in object-oriented programming?
Answer: Inheritance is the ability of a new class to be created from an existing class, inheriting 
its attributes and methods.

4. What is polymorphism in object-oriented programming?
Answer: Polymorphism is the ability of objects of different classes to be treated as if they were 
of the same class, allowing for more flexible and dynamic code.

5. What is a constructor in object-oriented programming?
Answer: A constructor is a special method that is used to initialize objects when they are 
created.

6. What is the difference between a public and private attribute in a class?
Answer: A public attribute can be accessed and modified by any code that interacts with the 
object, while a private attribute can only be accessed and modified by methods within the class.

7. What is a method in object-oriented programming?
Answer: A method is a function that is associated with a class or object and defines its behavior.

8. What is the purpose of the "self" keyword in Python classes?
Answer: The "self" keyword is used to refer to the object that the method is being called on, 
allowing the method to access and modify the object's attributes.

9. How does inheritance promote code reuse in object-oriented programming?
Answer: Inheritance allows new classes to be created that inherit the attributes and methods of 
an existing class, reducing the need to write redundant code.

10. What are some advantages of using classes and objects in programming?
Answer: Advantages of using classes and objects include encapsulation of data and 
functionality, code reuse through inheritance and polymorphism, and the ability to create more 
modular and flexible code.



Lec 28 - Lecture Overview

1. What is the purpose of encapsulation in object-oriented programming? Provide an 
example.

Answer: Encapsulation is the practice of hiding implementation details from the user and providing 
a clean and consistent interface for working with the object. This helps in preventing accidental 
modification of object state and makes it easier to change the implementation details without 
affecting the code that uses the object. An example of encapsulation can be a bank account class, 
where the balance variable is hidden from the user and can only be accessed through methods 
such as deposit and withdraw.

2. What is inheritance in object-oriented programming? Give an example.

Answer: Inheritance is the ability to create a new class by extending an existing class. The new 
class inherits all the properties and methods of the existing class and can add its own properties 
and methods as well. An example of inheritance can be a vehicle class that has properties such as 
color and number of wheels. A car class can then be created by inheriting from the vehicle class 
and adding its own properties such as model and engine type.

3. What is polymorphism in object-oriented programming? Give an example.

Answer: Polymorphism is the ability of objects of different classes to be used interchangeably in the 
same context. This is achieved through method overriding and method overloading. An example of 
polymorphism can be a shape class that has a draw method. The class can have subclasses such 
as circle, rectangle, and triangle that inherit from the shape class and implement their own draw 
method that is specific to their shape.

4. What is the difference between a class and an object in object-oriented programming?

Answer: A class is a blueprint for creating objects that define the properties and methods that 
objects of that class will have. An object, on the other hand, is an instance of a class that has 
specific values for its properties and can invoke its methods.

5. What is the purpose of a constructor in a class?

Answer: A constructor is a special method in a class that is used to initialize the object's properties 
when it is created. It is called automatically when the object is instantiated and can be used to set 
default values for properties or to perform any other initialization tasks.

6. What is the difference between public, private, and protected access modifiers in a 
class?

Answer: Public access modifier allows properties and methods to be accessed from anywhere, 
Private access modifier restricts properties and methods to be accessed only within the same 
class, and Protected access modifier allows properties and methods to be accessed only within the 
same class and its subclasses.

7. What is method overloading in object-oriented programming? Give an example.



Answer: Method overloading is the ability to define multiple methods with the same name but 
different parameters in a class. This allows the same method name to be used for similar tasks that 
may have different input parameters. An example of method overloading can be a calculator class 
that has two methods with the same name add, but one takes two integer parameters and the other 
takes two double parameters.

8. What is method overriding in object-oriented programming? Give an example.

Answer: Method overriding is the ability of a subclass to provide its own implementation of a 
method that is already defined in its superclass. This allows the subclass to modify the behavior of 
the inherited method. An example of method overriding can be a vehicle class that has a start 
method. A car subclass can then override the start method to add additional functionality specific to 
the car.

9. What is abstraction in object-oriented programming? Give an example.

Answer: Abstraction is the practice of hiding implementation details from the user and providing a 
simplified view of the object. This is achieved by exposing only the necessary information and 
hiding the implementation details. An example of abstraction can be a shape class that has a 
method called getArea, which returns the area of the shape.



Lec 29 - Friend functions

1. What is a friend function in C++?
A friend function in C++ is a function that is not a member of a class but has access to the 
private and protected members of the class.

2. What is the syntax for declaring a friend function?
The syntax for declaring a friend function is as follows:
friend return_type function_name(class_name &object);

3. What is the difference between a friend function and a member function?
A friend function is not a member of the class, but has access to the private and protected 
members of the class. A member function is a function that is a part of the class and has access 
to all the members of the class.

4. Can a friend function be called without an object of the class?
Yes, a friend function can be called without an object of the class.

5. Can a friend function be declared inside a class?
Yes, a friend function can be declared inside a class.

6. Can a friend function be inherited by the derived class?
No, a friend function cannot be inherited by the derived class.

7. What is the difference between a friend class and a friend function?
A friend class is a class that has access to the private and protected members of another class. 
A friend function is a function that has access to the private and protected members of a class.

8. What is the use of a friend function?
A friend function is used to access the private and protected members of a class from outside 
the class.

9. Can a friend function be overloaded?
Yes, a friend function can be overloaded.

10. What is the scope of a friend function?
The scope of a friend function is global, but it has access to the private and protected members 
of the class.



Lec 30 - Reference data type

1. What is a reference variable in C++? How is it different from a pointer?
Answer: A reference variable in C++ is an alias to an already existing variable. It is declared 
using an ampersand (&) symbol. A reference variable is different from a pointer in that it cannot 
be null and cannot be reassigned to point to another object.

2. Can a reference be returned from a function in C++?
Answer: Yes, a reference can be returned from a function in C++. This can be useful in cases 
where we want to modify the value of an existing variable using a function.

3. What is the purpose of using a reference as a function parameter in C++?
Answer: Using a reference as a function parameter in C++ allows us to modify the value of the 
original variable that is being passed to the function, rather than just making a copy of the 
variable.

4. How is a reference different from a constant reference in C++?
Answer: A constant reference in C++ is a reference that cannot be modified. This means that 
any attempt to modify the value of the referenced variable will result in a compilation error.

5. What is a reference variable in C++ used for?
Answer: A reference variable in C++ is typically used to provide an alternative name for an 
existing variable. It can also be used to pass variables by reference to functions, which can be 
more efficient than passing by value.

6. Can a reference be used to refer to a pointer variable in C++?
Answer: Yes, a reference can be used to refer to a pointer variable in C++. This can be useful in 
cases where we want to modify the value of the pointer variable using a function.

7. How is a reference variable initialized in C++?
Answer: A reference variable in C++ must be initialized when it is declared. This initialization 
binds the reference to the variable being referenced.

8. What is the difference between a reference and a copy in C++?
Answer: A reference in C++ is an alias to an existing variable, while a copy is a separate 
instance of the variable. Modifying a reference modifies the original variable, while modifying a 
copy does not affect the original variable.

9. Can a reference be used to refer to an object in C++?
Answer: Yes, a reference can be used to refer to an object in C++. This can be useful in cases 
where we want to modify the value of an object using a function.

10. What is the difference between a reference and a pointer in C++?
Answer: A reference in C++ is an alias to an existing variable, while a pointer is a variable that 
stores the memory address of another variable. A reference cannot be null and cannot be 
reassigned to point to another object, while a pointer can be null and can be reassigned to point 
to another object.



Lec 31 - Lecture Overview

1. What are some characteristics of a good lecture?
Answer: A good lecture should be interactive, engaging, use visual aids, and reinforce key 
points.

2. How long should a lecture last?
Answer: A lecture should last around 90 minutes.

3. What is the purpose of a lecture?
Answer: The purpose of a lecture is to provide information to the audience.

4. What are some common mistakes that lecturers make?
Answer: Common mistakes include speaking too quickly, neglecting questions, and ignoring the 
audience.

5. What are some strategies for dealing with challenging questions during a lecture?
Answer: Strategies include repeating the question for clarity, admitting if you don't know the 
answer, and encouraging audience participation.

6. What is the recommended way to begin a lecture?
Answer: A good way to begin a lecture is by asking the audience a question to get them 
thinking.

7. How can lecturers keep the audience engaged during a lecture?
Answer: By asking questions and encouraging participation.

8. How should a lecture be concluded?
Answer: A lecture should be concluded by summarizing key points and leaving time for 
questions.

9. What is the recommended amount of material to cover during a lecture?
Answer: Lecturers should avoid covering too much material and focus on key points.

10. How can lecturers improve their skills?
Answer: By seeking feedback and making adjustments as needed to ensure the best possible 
learning experience for their audience.



Lec 32 - Recap

1. What is the purpose of a recap?
Answer: The purpose of a recap is to summarize or review the main points or events of a 
particular situation, conversation, or activity.

2. What are some key elements of an effective recap?
Answer: Some key elements of an effective recap include being concise, highlighting the most 
important information, and providing a clear summary of the main points.

3. What are some situations where a recap might be necessary?
Answer: Situations where a recap might be necessary include after a meeting, a presentation, a 
phone call, or any other situation where important information is discussed.

4. How can you make a recap more engaging for your audience?
Answer: To make a recap more engaging for your audience, you can use visuals, tell a story, or 
use examples that illustrate the key points.

5. How can you ensure that your recap is accurate?
Answer: To ensure that your recap is accurate, you should take notes during the conversation 
or event, confirm any unclear information with the relevant parties, and double-check your 
summary for accuracy.

6. What are some common mistakes to avoid when writing a recap?
Answer: Some common mistakes to avoid when writing a recap include being too detailed, 
leaving out important information, or misinterpreting the key points.

7. What are some benefits of using a recap?
Answer: Some benefits of using a recap include saving time, avoiding misunderstandings, and 
providing clarity on important information.

8. What are some tips for delivering a good recap?
Answer: Some tips for delivering a good recap include being clear and concise, using an 
engaging delivery style, and focusing on the most important information.

9. How can you tailor your recap to different audiences?
Answer: To tailor your recap to different audiences, you should consider their level of familiarity 
with the topic, their interests, and their goals in listening to the recap.

10. What are some best practices for sharing a recap with a remote team?
Answer: Some best practices for sharing a recap with a remote team include using a clear and 
concise format, using visuals or audio to enhance engagement, and providing opportunities for 
questions or feedback.



Lec 33 - Operator Overloading

1. What is operator overloading?
Answer: Operator overloading is a feature in object-oriented programming that allows operators 
such as +, -, and * to have different meanings when applied to user-defined objects.

2. What is the difference between unary and binary operators?
Answer: Unary operators take only one operand, whereas binary operators take two operands.

3. What is the syntax for overloading an operator in C++?
Answer: The syntax for overloading an operator in C++ is: operator symbol(parameters).

4. What is a member function in C++?
Answer: A member function is a function that is defined inside a class and can access the 
private members of the class.

5. Can the assignment operator be overloaded as a friend function?
Answer: No, the assignment operator cannot be overloaded as a friend function.

6. What is the purpose of overloading the << operator in C++?
Answer: The << operator is overloaded to provide a convenient way to output user-defined 
objects to the console.

7. Can the scope resolution operator (::) be overloaded in C++?
Answer: No, the scope resolution operator cannot be overloaded in C++.

8. What is the difference between the postfix and prefix versions of the increment operator 
(++)?
Answer: The postfix version returns the original value of the operand, whereas the prefix version 
returns the incremented value of the operand.

9. What is the difference between a friend function and a member function in C++?
Answer: A friend function is not a member of the class, but has access to the private members 
of the class. A member function is a function that is defined inside the class.

10. Can the conditional operator (?:) be overloaded in C++?
Answer: No, the conditional operator (?:) cannot be overloaded in C++.



Lec 34 - Arrays of Objects

1. What is an array of objects and what is its purpose?
Answer: An array of objects is an array that stores multiple objects of the same class. Its 
purpose is to provide a more organized and efficient way of working with objects, allowing for 
the manipulation of multiple objects at once.

2. How do you declare and initialize an array of objects in C++?
Answer: An array of objects is declared and initialized using the syntax ClassName 
arrayName[size] = {object1, object2, object3, ...}. The size of the array must be specified, and 
the objects are separated by commas.

3. How do you access the elements of an array of objects in C++?
Answer: The elements of an array of objects are accessed using array index notation, such as 
arrayName[index]. The index starts at 0 for the first element and increases by 1 for each 
subsequent element.

4. How do you call a member function of an object in an array of objects?
Answer: A member function of an object in an array of objects is called using array index 
notation, such as arrayName[index].memberFunction().

5. How do you access a data member of an object in an array of objects?
Answer: A data member of an object in an array of objects is accessed using array index 
notation, such as arrayName[index].dataMember.

6. Can you modify the values of an object in an array of objects?
Answer: Yes, you can modify the values of an object in an array of objects by accessing its data 
members and using the assignment operator.

7. How do you loop through an array of objects in C++?
Answer: An array of objects can be looped through using a for loop, such as for (int i = 0; i < 
size; i++) { ... }.

8. Can you sort an array of objects in C++?
Answer: Yes, you can sort an array of objects in C++ using the sort() function provided by the 
algorithm header file.

9. How do you find the size of an array of objects in C++?
Answer: The size of an array of objects in C++ can be found using the sizeof() operator or by 
dividing the total size of the array by the size of each element.

10. How do you delete an array of objects in C++?
Answer: An array of objects is deleted using the delete[] operator, which deallocates the 
memory assigned to the array.



Lec 35 - Streams

1. What is a stream in C++?
Answer: A stream is an abstraction that represents a sequence of data flowing between a 
program and an input/output device.

2. What are the three types of streams in C++?
Answer: The three types of streams in C++ are input streams, output streams, and error 
streams.

3. What is the purpose of using stream manipulators in C++?
Answer: Stream manipulators are used to modify the output formatting of streams, such as 
setting the width or precision of output data.

4. What is the difference between text mode and binary mode when opening a file stream in 
C++?
Answer: Text mode is used for reading and writing text files, while binary mode is used for 
reading and writing binary files.

5. What is the difference between cin and getline() in C++?
Answer: cin is used to read input data from the console, while getline() is used to read a line of 
input data from a file.

6. How can you open a file for writing in C++?
Answer: You can open a file for writing in C++ by calling the open() function with the mode 
parameter set to "out" or "out | trunc".

7. What is the purpose of the flush() function in C++?
Answer: The flush() function is used to clear the output buffer and ensure that any pending 
output data is written to the output device.

8. How can you check if an input operation has failed in C++?
Answer: You can check if an input operation has failed by calling the fail() function on the input 
stream.

9. How can you read data from a stringstream in C++?
Answer: You can read data from a stringstream in C++ by calling the str() function to get the 
stream's internal string buffer, and then using standard string operations to extract the data.

10. How can you write data to a file in binary mode in C++?
Answer: You can write data to a file in binary mode in C++ by opening the file stream with the 
mode parameter set to "out | binary", and then using the write() function to write data in binary 
format.



Lec 36 - Stream Manipulations

1. What are stream manipulations in C++?
Answer: Stream manipulations, also known as manipulators, are functions that are used to 
modify the formatting and behavior of input and output streams in C++.

2. How do you use the setw() manipulator to set the width of output data?
Answer: You can use the setw() manipulator followed by an integer value to set the width of 
output data. For example: cout << setw(10) << "Hello";

3. What is the purpose of the setprecision() manipulator?
Answer: The setprecision() manipulator is used to set the number of decimal places for floating-
point output data.

4. How do you use the setiosflags() manipulator to set stream flags?
Answer: You can use the setiosflags() manipulator followed by a flag constant to set stream 
flags. For example: cout << setiosflags(ios::fixed) << 3.14159;

5. What is the purpose of the skipws manipulator?
Answer: The skipws manipulator is used to skip leading whitespace when reading input data.

6. How do you use the setfill() manipulator to set the fill character for output data?
Answer: You can use the setfill() manipulator followed by a character value to set the fill 
character for output data. For example: cout << setfill('*') << setw(10) << "Hello";

7. What is the purpose of the resetiosflags() manipulator?
Answer: The resetiosflags() manipulator is used to reset the format flags for a stream to their 
default values.

8. How do you use the noshowpoint manipulator to hide the decimal point for floating-point 
output data?
Answer: You can use the noshowpoint manipulator to hide the decimal point for floating-point 
output data. For example: cout << noshowpoint << 3.14159;

9. What is the purpose of the setiosflags() manipulator with the ios::left flag?
Answer: The setiosflags() manipulator with the ios::left flag is used to left-justify output data.

10. How do you use the setprecision() manipulator with fixed-point notation to set the 
number of decimal places for output data?
Answer: You can use the setprecision() manipulator with the fixed-point notation to set the 
number of decimal places for output data. For example: cout << fixed << setprecision(2) << 
3.14159;



Lec 37 - Overloading Insertion and Extraction Operators

1. What is the purpose of overloading insertion and extraction operators?
Answer: Overloading these operators enables custom input and output of user-defined types.

2. How do you overload the insertion operator in C++?
Answer: The insertion operator is overloaded using the syntax: ostream& operator<<(ostream& 
os, const Object& obj)

3. How do you overload the extraction operator in C++?
Answer: The extraction operator is overloaded using the syntax: istream& operator>>(istream& 
is, Object& obj)

4. What is the return type of the overloaded insertion operator?
Answer: The return type of the overloaded insertion operator is ostream&.

5. What is the return type of the overloaded extraction operator?
Answer: The return type of the overloaded extraction operator is istream&.

6. How do you define an insertion operator for a class in C++?
Answer: You define an insertion operator for a class in C++ by declaring a friend function of the 
class.

7. How do you define an extraction operator for a class in C++?
Answer: You define an extraction operator for a class in C++ by declaring a friend function of 
the class.

8. Can you overload the insertion and extraction operators for built-in types in C++?
Answer: No, these operators cannot be overloaded for built-in types in C++.

9. What is the purpose of the 'const' keyword in the insertion operator's parameter list?
Answer: The 'const' keyword in the insertion operator's parameter list specifies that the object 
being inserted should not be modified.

10. What is the purpose of the '&' symbol in the insertion and extraction operator's 
parameter list?
Answer: The '&' symbol in the insertion and extraction operator's parameter list specifies that the 
parameters should be passed by reference.



Lec 38 - User Defined Manipulator

1. What is a user-defined manipulator in C++?
Answer: A user-defined manipulator is a function that modifies the output of a stream in a 
customized way.

2. How are user-defined manipulators defined in C++?
Answer: User-defined manipulators are defined as global functions outside of any class.

3. What is the syntax for calling a user-defined manipulator?
Answer: The syntax for calling a user-defined manipulator is to use the insertion operator (<<) 
followed by the manipulator function name.

4. What is the purpose of std::setw() function in C++?
Answer: The std::setw() function is used to set the width of the output field.

5. What is the return type of a user-defined manipulator function in C++?
Answer: The return type of a user-defined manipulator function is ostream&.

6. How can we define a manipulator that sets the precision of floating-point values in C++?
Answer: We can define a manipulator that sets the precision of floating-point values using the 
std::setprecision() function.

7. What is the purpose of the std::setfill() function in C++?
Answer: The std::setfill() function is used to set the fill character of the output field.

8. What is the purpose of std::left and std::right manipulators in C++?
Answer: std::left and std::right manipulators are used to set the alignment of the output field to 
the left or right, respectively.

9. Can we chain multiple user-defined manipulators together in C++?
Answer: Yes, we can chain multiple user-defined manipulators together using the insertion 
operator (<<).

10. What is the header file that must be included to use user-defined manipulators in C++?
Answer: The header file that must be included to use user-defined manipulators in C++ is 
<iomanip>.



Lec 39 - Pointers

1. What is a pointer in C++?
A pointer is a variable that stores the memory address of another variable.

2. How can you declare a pointer variable in C++?
A pointer variable is declared by placing an asterisk (*) before the variable name.

3. How do you initialize a pointer to point to a specific memory address?
You can initialize a pointer by assigning the address of a variable to it using the reference 
operator (&).

4. How do you access the value of the variable that a pointer is pointing to?
You can access the value of the variable that a pointer is pointing to using the dereference 
operator (*).

5. What is the difference between a null pointer and a void pointer?
A null pointer is a pointer that does not point to any memory location, while a void pointer is a 
pointer that can point to any data type.

6. What is pointer arithmetic?
Pointer arithmetic refers to the arithmetic operations that can be performed on pointers, such as 
adding or subtracting an integer value to a pointer.

7. What is a function pointer?
A function pointer is a pointer that points to a function instead of a variable.

8. What is a dangling pointer?
A dangling pointer is a pointer that points to a memory location that has been deallocated or 
freed.

9. How do you avoid memory leaks when using pointers?
You can avoid memory leaks by ensuring that you deallocate any dynamically allocated memory 
using the delete operator.

10. How do you use pointers to pass arguments to a function by reference?
You can use pointers to pass arguments to a function by reference by passing the address of 
the variable to the function and then using the dereference operator to access the value of the 
variable.



Lec 40 - Objects as Class Members

1. What is the meaning of "Composition" in OOP?
Ans: Composition is the process of including one class inside another class as a member 
variable.

2. What are the advantages of using objects as class members?
Ans: The advantages of using objects as class members are reusability, encapsulation, and 
modularity.

3. What is the difference between composition and inheritance?
Ans: Composition is a "has-a" relationship, while inheritance is an "is-a" relationship. In 
composition, one class is a member of another class, while in inheritance, one class inherits the 
properties and behaviors of another class.

4. How do you access the members of an object inside another object?
Ans: You can access the members of an object inside another object by using the dot operator.

5. What is the role of constructors in objects as class members?
Ans: Constructors are used to initialize the objects as class members.

6. Can we have an object of the same class as a member variable?
Ans: Yes, we can have an object of the same class as a member variable. This is called 
"recursion."

7. What is the purpose of using objects as class members?
Ans: The purpose of using objects as class members is to create more complex classes with 
better functionality and modularity.

8. What is the meaning of aggregation in OOP?
Ans: Aggregation is the process of including one class inside another class as a member 
variable, but the included class can exist independently of the containing class.

9. How do you create an object as a member variable of another object?
Ans: To create an object as a member variable of another object, you must declare a member 
variable of the desired class inside the containing class.

10. What are the disadvantages of using objects as class members?
Ans: The main disadvantage of using objects as class members is that it can increase the 
complexity of the program and make it harder to understand and maintain. It can also lead to 
excessive memory usage if not managed properly.



Lec 41 - Template Functions

1. What is a template function in C++?
A template function is a function that is designed to work with multiple data types by using 
template parameters.

2. How do you declare a template function in C++?
You declare a template function by using the keyword "template" followed by the template 
parameter list and the function declaration.

3. What is the purpose of a template parameter?
A template parameter is used to represent a data type or a constant value that can be used by 
the template function.

4. How does template specialization work in C++?
Template specialization is a way to create a specialized version of a template function for a 
specific data type or value.

5. What is a non-type template parameter in C++?
A non-type template parameter is a value that is used as a template argument, but is not a data 
type.

6. How does template argument deduction work in C++?
Template argument deduction is the process of determining the data types of template 
arguments based on the function arguments.

7. How do you overload a template function in C++?
You can overload a template function by defining a new function with the same name but 
different template parameters.

8. What is the difference between a function template and a class template in C++?
A function template is a template function, whereas a class template is a template class that can 
contain member functions and data.

9. What are the advantages of using template functions in C++?
Template functions provide code reusability, reduce development time, and allow for generic 
programming.

10. What are the potential drawbacks of using template functions in C++?
Template functions can lead to longer compilation times, increased complexity, and can be 
difficult to understand for novice programmers.



Lec 42 - Class Templates

1. What is a class template in C++?
Answer: A class template is a generic class that can work with multiple data types.

2. How do you declare a class template in C++?
Answer: You declare a class template using the "template" keyword followed by the template 
parameter list and the class declaration.

3. What is a template parameter in a class template?
Answer: A template parameter is a placeholder for a data type that can be used by the class.

4. How do you instantiate a class template in C++?
Answer: You instantiate a class template by creating an object of the class with the desired data 
type as the template argument.

5. How does template specialization work in class templates?
Answer: Template specialization allows you to create a specialized version of the class for a 
specific data type or value.

6. Can you define member functions for a class template inside the class definition?
Answer: Yes, you can define member functions for a class template inside the class definition.

7. How do you overload a class template in C++?
Answer: You overload a class template by defining a new member function with the same name 
but different template parameters.

8. What are the advantages of using class templates in C++?
Answer: Class templates provide code reusability, improve code quality, and allow for generic 
programming and flexible data structures.

9. What are the potential drawbacks of using class templates in C++?
Answer: Class templates can lead to longer compilation times, can be difficult to understand for 
novice programmers, and can be prone to errors and bugs.

10. Can class templates be used with user-defined data types?
Answer: Yes, class templates can be used with user-defined data types as long as the data type 
is specified as a template parameter.



Lec 43 - Programming Exercise - Matrices

1. What is the difference between a square matrix and a rectangular matrix?
A square matrix has an equal number of rows and columns, while a rectangular matrix has 
different numbers of rows and columns.

2. What is the process of multiplying two matrices called, and how is it performed?
Matrix multiplication is the process of multiplying two matrices by taking the dot product of each 
row of the first matrix with each column of the second matrix. The resulting matrix will have the 
same number of rows as the first matrix and the same number of columns as the second matrix.

3. What is the transpose of a matrix?
The transpose of a matrix is the matrix obtained by interchanging its rows and columns.

4. What is the determinant of a matrix, and how is it calculated?
The determinant of a matrix is a scalar value that can be calculated using various methods, 
including Gaussian elimination, cofactor expansion, and LU decomposition. It is used to 
determine the invertibility of a matrix.

5. What is a diagonal matrix?
A diagonal matrix is a square matrix in which all the off-diagonal elements are zero.

6. What is the difference between a symmetric matrix and a skew-symmetric matrix?
A symmetric matrix is a matrix that is equal to its transpose, while a skew-symmetric matrix is a 
matrix whose transpose is equal to the negative of the original matrix.

7. What is an identity matrix?
An identity matrix is a square matrix in which all the diagonal elements are equal to one and all 
the off-diagonal elements are equal to zero.

8. What is an upper triangular matrix?
An upper triangular matrix is a square matrix in which all the elements below the main diagonal 
are zero.

9. What is the inverse of a matrix, and how is it calculated?
The inverse of a matrix is a matrix that, when multiplied by the original matrix, gives the identity 
matrix. It can be calculated using various methods, including Gauss-Jordan elimination and LU 
decomposition.

10. What are some practical applications of matrices in programming?
Matrices are used in various applications such as image processing, 3D graphics, machine 
learning, and numerical simulations. They can also be used to represent data in a tabular 
format.



Lec 44 - Matrix Class

1. What is a matrix class, and why is it useful in programming?

Answer: A matrix class is a programming construct that encapsulates the properties and behaviors 
of matrices, allowing programmers to create and manipulate matrices with ease. It is useful 
because it promotes code reuse, modularity, and simplifies the implementation of matrix operations 
in programs.

2. What are some common member variables included in a matrix class?

Answer: Some common member variables of a matrix class include the dimensions and element 
values of the matrix.

3. What are some common matrix operations that can be performed using a matrix class?

Answer: Common matrix operations that can be performed using a matrix class include matrix 
addition, multiplication, transposition, and finding the determinant.

4. How can encapsulation be used in a matrix class?

Answer: Encapsulation can be used in a matrix class to hide the implementation details of the class 
and expose only the necessary functionality to external programs.

5. How can a matrix class help make programs more efficient?

Answer: A matrix class can help make programs more efficient by optimizing matrix operations and 
reducing the amount of duplicate code needed for matrix manipulation.

6. What is the purpose of a constructor in a matrix class?

Answer: The purpose of a constructor in a matrix class is to initialize the member variables of the 
class with the necessary values.

7. What is the difference between a row vector and a column vector in a matrix class?

Answer: A row vector is a one-dimensional matrix that consists of a single row of elements, while a 
column vector is a one-dimensional matrix that consists of a single column of elements.

8. What is the importance of overloading operators in a matrix class?

Answer: Overloading operators in a matrix class allows the programmer to use the same operator 
symbols (+, *, etc.) to perform matrix operations as they would for regular arithmetic operations.

9. How can a matrix class be implemented using object-oriented programming principles?

Answer: A matrix class can be implemented using object-oriented programming principles by 
defining the class with member variables and methods that represent the properties and behaviors 
of matrices.



10. How can a matrix class be used to solve real-world problems in fields such as 
engineering and finance?

Answer: A matrix class can be used to solve real-world problems in fields such as engineering and 
finance by providing a tool for organizing and manipulating complex data sets, performing 
calculations, and making predictions or projections based on the data.



Lec 45 - Example (continued)

1. What is the purpose of "example (continued)" in programming documentation?
Answer: The purpose of "example (continued)" is to provide further details or clarification on a 
specific code example in programming documentation.

2. How can "example (continued)" help developers in programming?
Answer: "Example (continued)" can help developers better understand how to implement a 
particular feature or function, improve their overall comprehension of the code, and make the 
code more organized and easier to read.

3. What is the benefit of using code examples in programming documentation?
Answer: Code examples can help demonstrate how to use a particular feature or function, 
provide a practical understanding of the code, and promote code reuse and modularity.

4. Why is encapsulation important in programming?
Answer: Encapsulation is important in programming because it helps hide implementation 
details of a class or function and promotes code reuse and modularity.

5. What programming principle allows the programmer to use the same operator symbols 
to perform matrix operations as they would for regular arithmetic operations?
Answer: Operator overloading allows the programmer to use the same operator symbols to 
perform matrix operations as they would for regular arithmetic operations.

6. What is the main benefit of using a matrix class in programming?
Answer: The main benefit of using a matrix class in programming is that it allows for easy 
manipulation and analysis of complex data sets and can help solve real-world problems in fields 
like engineering and finance.

7. Which programming approach is typically used to implement a matrix class?
Answer: Object-oriented programming is typically used to implement a matrix class.

8. How can "example (continued)" improve the readability of code in programming 
documentation?
Answer: "Example (continued)" can help make the code more organized and easier to read, as 
it provides further details or clarification on a specific code example.

9. What is the purpose of inheritance in programming?
Answer: Inheritance is used in programming to create a new class based on an existing class, 
where the new class inherits the attributes and methods of the existing class.

10. What is the role of polymorphism in programming?
Answer: Polymorphism is used in programming to allow objects of different classes to be treated 
as if they were objects of the same class, making the code more flexible and reusable.




