
CS301
Data Structures

Important mcqs

Lec 1 - Introduction to Data Structures

1. Which data structure follows the "last-in-first-out" (LIFO) principle? a. Queue b. Stack c. Linked
List d. Tree Solution: b

2. Which data structure allows for efficient insertion and deletion operations in the middle? a. Array b.
Stack c. Queue d. Linked List Solution: d

3. Which data structure is used to represent hierarchical relationships? a. Array b. Stack c. Queue d.
Tree Solution: d

4. Which data structure is used to find the shortest path between two nodes in a network? a. Array b.
Stack c. Queue d. Graph Solution: d

5. Which data structure stores elements in a non-linear and hierarchical manner? a. Array b. Stack c.
Queue d. Tree Solution: d

6. Which data structure follows the "first-in-first-out" (FIFO) principle? a. Queue b. Stack c. Linked
List d. Tree Solution: a

7. Which data structure is used to reverse the order of elements in a sequence? a. Array b. Stack c.
Queue d. Linked List Solution: b

8. Which data structure is used to implement a symbol table? a. Array b. Stack c. Queue d. Hash table
Solution: d

9. Which data structure is used to sort elements in a sequence? a. Array b. Stack c. Queue d. Heap
Solution: d

10. Which data structure is used to store and access elements based on a key-value pair? a. Array b.
Stack c. Queue d. Dictionary Solution: d



Lec 2 - List Implementation

1. Which data structure is used to implement a list?
a) Array
b) Stack
c) Queue
d) Tree
Answer: a) Array

2. Which of the following is a disadvantage of array-based lists?
a) Efficient random access to elements
b) Dynamic resizing of the list
c) Inefficient insertion and deletion operations
d) No need to allocate memory in advance
Answer: c) Inefficient insertion and deletion operations

3. Which of the following is a disadvantage of linked-list based lists?
a) Efficient random access to elements
b) Dynamic resizing of the list
c) Inefficient insertion and deletion operations
d) No need to allocate memory in advance
Answer: a) Efficient random access to elements

4. Which of the following is true for an empty list?
a) It has no elements
b) It has one element
c) It has multiple elements
d) None of the above
Answer: a) It has no elements

5. Which operation adds an element at the end of an array-based list?
a) push()
b) pop()
c) insert()
d) append()
Answer: d) append()

6. Which operation adds an element at the beginning of a linked-list based list?
a) push()
b) pop()
c) insert()
d) append()
Answer: a) push()

7. Which operation removes the last element from an array-based list?
a) push()
b) pop()
c) insert()
d) append()
Answer: b) pop()



8. Which operation removes the first element from a linked-list based list?
a) push()
b) pop()
c) insert()
d) append()
Answer: b) pop()

9. Which of the following is a common application of lists?
a) Implementing a queue
b) Implementing a hash table
c) Implementing a binary search tree
d) Implementing a heap
Answer: a) Implementing a queue

10. Which of the following is not a type of list?
a) Singly linked list
b) Doubly linked list
c) Circular linked list
d) Heap linked list
Answer: d) Heap linked list



Lec 3 - Linked List inside Computer Memory

1. In a linked list, each node contains:
a. A value and a pointer to the previous node
b. A value and a pointer to the next node
c. A key and a value
d. A key and a pointer to the next node
Answer: b

2. The first node in a linked list is called the:
a. Head
b. Tail
c. Root
d. Leaf
Answer: a

3. In computer memory, each node in a linked list is typically represented as:
a. A block of memory that contains the value and a pointer to the previous node
b. A block of memory that contains the value and a pointer to the next node
c. A hash table that contains the key and the value
d. An array that contains the key and a pointer to the next node
Answer: b

4. What is the time complexity of inserting a node at the beginning of a linked list?
a. O(1)
b. O(n)
c. O(log n)
d. O(n log n)
Answer: a

5. What is the time complexity of inserting a node at the end of a linked list?
a. O(1)
b. O(n)
c. O(log n)
d. O(n log n)
Answer: b

6. Deleting a node from a linked list requires updating the:
a. Previous node's pointer to the next node
b. Next node's pointer to the previous node
c. Current node's value to NULL
d. None of the above
Answer: a

7. Traversing a linked list means:
a. Deleting a node from the list
b. Inserting a node into the list
c. Moving through the list from the head to the tail
d. Sorting the list in ascending order
Answer: c



8. Which of the following is a disadvantage of linked lists compared to arrays?
a. Linked lists allow for efficient insertion and deletion of nodes
b. Linked lists use memory flexibly
c. Linked lists can grow dynamically
d. Linked lists have slow access times for specific nodes
Answer: d

9. Which of the following operations can be performed in constant time on a linked list?
a. Finding the maximum value in the list
b. Inserting a node at the end of the list
c. Removing the head node from the list
d. Sorting the list in descending order
Answer: c

10. What is the space complexity of a linked list?
a. O(n)
b. O(log n)
c. O(1)
d. O(n log n)
Answer: a



Lec 4 - Methods of Linked List

1. What is the time complexity of inserting an element at the beginning of a singly linked 
list?
a) O(n)
b) O(log n)
c) O(1)
d) O(n^2)
Answer: c) O(1)

2. Which of the following is not a type of Linked List?
a) Singly Linked List
b) Doubly Linked List
c) Circular Linked List
d) Binary Linked List
Answer: d) Binary Linked List

3. What is the time complexity of inserting an element at the end of a singly linked list?
a) O(n)
b) O(log n)
c) O(1)
d) O(n^2)
Answer: a) O(n)

4. Which of the following is not a pointer used in Linked List?
a) head pointer
b) tail pointer
c) node pointer
d) root pointer
Answer: d) root pointer

5. What is the time complexity of deleting an element from a singly linked list?
a) O(n)
b) O(log n)
c) O(1)
d) O(n^2)
Answer: a) O(n)

6. Which of the following Linked List traversal technique involves recursion?
a) Linear traversal
b) Binary traversal
c) Depth First Traversal
d) Breadth First Traversal
Answer: c) Depth First Traversal

7. Which of the following is a disadvantage of using a doubly linked list?
a) Faster traversal in both directions
b) Requires more memory than singly linked list
c) More difficult to implement than singly linked list
d) Allows insertion and deletion of elements only at the beginning of the list
Answer: b) Requires more memory than singly linked list



8. Which of the following is not a type of node used in Linked List?
a) data node
b) header node
c) sentinel node
d) tail node
Answer: a) data node

9. Which of the following Linked List method is used to reverse the order of elements in the 
list?
a) reverse()
b) rotate()
c) shuffle()
d) sort()
Answer: a) reverse()

10. Which of the following is a type of circular linked list?
a) Circular doubly linked list
b) Circular binary linked list
c) Circular balanced linked list
d) Circular heap linked list
Answer: a) Circular doubly linked list



Lec 5 - Benefits of using circular list

1. What is a benefit of using a circular linked list?
a) It has a fixed size
b) It allows for efficient implementation of circular structures
c) It cannot be traversed multiple times
d) It is less efficient than a linear linked list

Answer: b

2. What is a circular buffer?
a) A data structure that can only be accessed in a circular order
b) A data structure that can only be accessed in a linear order
c) A buffer that can be efficiently implemented using a circular linked list
d) A buffer that can only hold a fixed number of elements

Answer: c

3. How can a circular linked list simplify insertion at the beginning or end?
a) It requires more memory than a linear linked list
b) It requires less memory than a linear linked list
c) It requires the same amount of memory as a linear linked list
d) It cannot simplify insertion at the beginning or end

Answer: b

4. What is a disadvantage of using a circular linked list?
a) It is less efficient than a linear linked list
b) It cannot represent circular structures
c) It is more difficult to implement than a linear linked list
d) It has a fixed size

Answer: a

5. Which algorithm can be efficiently implemented using a circular linked list?
a) Binary search
b) Depth-first search
c) Breadth-first search
d) Traversing the list multiple times

Answer: d

6. What is a circular linked list?
a) A linked list where each node has a pointer to the previous node
b) A linked list where each node has a pointer to the next node and the previous node
c) A linked list where the last node points to the first node
d) A linked list where the first node points to the last node

Answer: c



7. What is a benefit of using a circular linked list for representing a clock?
a) It is less efficient than a linear linked list
b) It allows for efficient implementation of circular structures
c) It requires more memory than a linear linked list
d) It cannot represent circular structures

Answer: b

8. What is a circular linked list used for?
a) Representing trees
b) Implementing binary search
c) Implementing circular buffering
d) Storing fixed-size data

Answer: c

9. Can a circular linked list be traversed multiple times?
a) Yes, but it is less efficient than a linear linked list
b) No, it can only be traversed once
c) Yes, and it is more efficient than a linear linked list
d) Yes, but it requires more memory than a linear linked list

Answer: c

10. How is deletion at the end of a circular linked list implemented?
a) The last node's pointer is set to NULL
b) The last node's pointer is set to the first node
c) The second to last node's pointer is set to NULL
d) The second to last node's pointer is set to the first node

Answer: c



Lec 6 - Stack From the Previous Lecture

1. Which of the following is NOT a characteristic of a stack?
a. Follows LIFO principle
b. Has two main operations: push and pop
c. Can only be implemented using arrays
d. Topmost element is the last one added

Answer: c. Can only be implemented using arrays

2. What is the time complexity of push and pop operations in a stack implemented using an 
array?
a. O(1)
b. O(log n)
c. O(n)
d. O(n^2)

Answer: a. O(1)

3. Which data structure is often used to implement a stack?
a. Array
b. Linked List
c. Queue
d. Binary Tree

Answer: b. Linked List

4. Which of the following is NOT a common application of stacks?
a. Reversing a string
b. Evaluating postfix expressions
c. Implementing depth-first search in a graph
d. Sorting an array

Answer: d. Sorting an array

5. Which operation in a stack does not modify the stack?
a. Push
b. Pop
c. Peek
d. Size

Answer: c. Peek

6. What happens when we try to pop an element from an empty stack?
a. The program crashes
b. An error message is displayed
c. The topmost element becomes NULL
d. Nothing happens

Answer: b. An error message is displayed



7. Which of the following is NOT a disadvantage of using an array to implement a stack?
a. Fixed size
b. Elements must be contiguous in memory
c. Dynamic resizing is difficult
d. Push operation is slower than pop operation

Answer: d. Push operation is slower than pop operation

8. What is the maximum number of elements a stack implemented using an array can hold 
if its size is n?
a. n
b. n-1
c. 2n
d. 2n-1

Answer: b. n-1

9. Which of the following is NOT a potential application of stacks in computer science?
a. Function calls and return values
b. Undo and redo operations
c. Implementing breadth-first search in a graph
d. Checking for balanced parentheses in an expression

Answer: c. Implementing breadth-first search in a graph

10. What is the time complexity of searching for an element in a stack implemented using a 
linked list?
a. O(1)
b. O(log n)
c. O(n)
d. O(n^2)

Answer: c. O(n)



Lec 7 - Evaluating postfix expressions

1. What is postfix notation?
a) Operators are written before their operands
b) Operators are written after their operands
c) Operators are written in between their operands
d) None of the above

Answer: b) Operators are written after their operands

2. Which data structure is used to evaluate postfix expressions?
a) Queue
b) Linked List
c) Stack
d) Tree

Answer: c) Stack

3. Which of the following is an example of a postfix expression?
a) 2 + 3
b) 2 * 3 + 4
c) 2 3 +
d) (2 + 3) * 4

Answer: c) 2 3 +

4. What is the first step in evaluating a postfix expression?
a) Scan the expression from right to left
b) Scan the expression from left to right
c) Push the first operand onto the stack
d) Pop the first operand from the stack

Answer: b) Scan the expression from left to right

5. What happens when an operand is encountered in a postfix expression?
a) It is pushed onto the stack
b) It is popped from the stack
c) It is ignored
d) None of the above

Answer: a) It is pushed onto the stack

6. What happens when an operator is encountered in a postfix expression?
a) It is pushed onto the stack
b) It is popped from the stack
c) The top two operands are popped from the stack, and the operation is performed on them
d) None of the above

Answer: c) The top two operands are popped from the stack, and the operation is performed on 
them



7. Which of the following is an example of a postfix expression that involves multiplication?
a) 2 + 3
b) 2 * 3 + 4
c) 2 3 *
d) (2 + 3) * 4

Answer: c) 2 3 *

8. What happens when the entire postfix expression has been scanned?
a) The result is the top element in the stack
b) The result is the bottom element in the stack
c) The stack is empty
d) None of the above

Answer: a) The result is the top element in the stack

9. Which of the following is an example of a postfix expression that involves subtraction?
a) 2 + 3
b) 2 * 3 + 4
c) 2 3 -
d) (2 + 3) * 4

Answer: c) 2 3 -

10. Which of the following is an example of a postfix expression that involves division?
a) 2 + 3
b) 2 * 3 + 4
c) 2 3 /
d) (2 + 3) * 4

Answer: c) 2 3 /



Lec 8 - Conversion from infix to postfix

1. Which of the following data structures is commonly used for converting infix 
expressions to postfix expressions?
a. Stack
b. Queue
c. Linked List
d. Heap
Answer: a. Stack

2. In infix notation, where are operators written in relation to their operands?
a. Before
b. After
c. Between
d. Both a and c
Answer: d. Both a and c

3. What is the first step in converting an infix expression to postfix notation?
a. Scan the expression from left to right
b. Initialize an empty stack and postfix expression
c. Check for balanced parentheses
d. Add operands to the postfix expression
Answer: b. Initialize an empty stack and postfix expression

4. Which of the following operators has the highest precedence in mathematical 
expressions?
a. Multiplication
b. Division
c. Addition
d. Subtraction
Answer: a. Multiplication

5. What is the role of a stack in converting infix to postfix notation?
a. To keep track of operators and their precedence levels
b. To keep track of operands and their positions
c. To perform the necessary calculations
d. To check for errors in the expression
Answer: a. To keep track of operators and their precedence levels

6. What happens to a left parenthesis when converting from infix to postfix notation?
a. It is added to the postfix expression
b. It is pushed onto the stack
c. It is discarded
d. It is popped off the stack
Answer: b. It is pushed onto the stack

7. How can errors be handled while converting infix to postfix notation?
a. By checking for balanced parentheses
b. By checking for errors during scanning
c. By using a queue data structure
d. Both a and b
Answer: d. Both a and b



8. Which of the following expressions is equivalent to "a + b * c" in postfix notation?
a. "a b c * +"
b. "a b + c *"
c. "a + b c *"
d. "a b c + *"
Answer: a. "a b c * +"

9. What is the final step in converting an infix expression to postfix notation?
a. Pop any remaining operators off the stack and add them to the postfix expression
b. Add operands to the postfix expression
c. Discard the left parenthesis
d. Push the right parenthesis onto the stack
Answer: a. Pop any remaining operators off the stack and add them to the postfix expression

10. Which of the following is an advantage of postfix notation over infix notation?
a. It is easier to read and write
b. It eliminates the need for parentheses to indicate the order of operations
c. It is more commonly used in mathematical expressions
d. Both a and b
Answer: b. It eliminates the need for parentheses to indicate the order of operations.



Lec 9 - Memory Organization

1. Which of the following is the fastest type of memory?
a) Registers
b) Cache
c) Main memory
d) Secondary storage
Answer: a) Registers

2. Which level of memory is located close to the CPU and used to store frequently accessed 
data?
a) Registers
b) Cache
c) Main memory
d) Secondary storage
Answer: b) Cache

3. Which level of memory is used to store data and program instructions during execution?
a) Registers
b) Cache
c) Main memory
d) Secondary storage
Answer: c) Main memory

4. Which type of memory has the largest capacity?
a) Registers
b) Cache
c) Main memory
d) Secondary storage
Answer: d) Secondary storage

5. Which type of storage is used for long-term data storage?
a) Main memory
b) Secondary storage
c) Cache
d) Registers
Answer: b) Secondary storage

6. Which level of memory has the slowest access time?
a) Registers
b) Cache
c) Main memory
d) Secondary storage
Answer: d) Secondary storage

7. Which level of memory is the most expensive?
a) Registers
b) Cache
c) Main memory
d) Secondary storage
Answer: a) Registers



8. Which level of memory has the largest capacity?
a) Registers
b) Cache
c) Main memory
d) Secondary storage
Answer: d) Secondary storage

9. Which type of memory organization is used to minimize the time spent accessing data 
from higher levels of the memory hierarchy?
a) Top-down organization
b) Bottom-up organization
c) Parallel organization
d) Hierarchical organization
Answer: d) Hierarchical organization

10. Which type of computing system may use different types of memory organization 
depending on its intended use and performance requirements?
a) Embedded systems
b) Personal computers
c) Supercomputers
d) All of the above
Answer: d) All of the above



Lec 10 - Queues

1. What is a queue data structure?
a) A data structure where the last element added is the first one to be removed.
b) A data structure where the first element added is the first one to be removed.
c) A data structure where the middle element is always removed first.
d) None of the above.

Answer: b) A data structure where the first element added is the first one to be removed.

2. Which operation adds an element to the queue?
a) Dequeue
b) Enqueue
c) Peek
d) None of the above.

Answer: b) Enqueue

3. Which operation removes an element from the queue?
a) Dequeue
b) Enqueue
c) Peek
d) None of the above.

Answer: a) Dequeue

4. Which operation returns the element at the front of the queue without removing it?
a) Dequeue
b) Enqueue
c) Peek
d) None of the above.

Answer: c) Peek

5. Which data structure is commonly used to implement a queue?
a) Array
b) Linked list
c) Both a and b
d) None of the above.

Answer: c) Both a and b

6. Which of the following is not a real-world application of queues?
a) Waiting lines at banks
b) Amusement parks
c) Airports
d) None of the above.

Answer: d) None of the above.



7. What is the time complexity of the enqueue operation in a queue implemented using an 
array?
a) O(1)
b) O(n)
c) O(log n)
d) None of the above.

Answer: a) O(1)

8. What is the time complexity of the dequeue operation in a queue implemented using a 
linked list?
a) O(1)
b) O(n)
c) O(log n)
d) None of the above.

Answer: a) O(1)

9. Which of the following is a disadvantage of using an array to implement a queue?
a) Insertion and deletion are faster than in a linked list.
b) The size of the array must be fixed.
c) It is more efficient in terms of memory usage.
d) None of the above.

Answer: b) The size of the array must be fixed.

10. Which of the following is a disadvantage of using a linked list to implement a queue?
a) Insertion and deletion are slower than in an array.
b) The size of the linked list must be fixed.
c) It is less efficient in terms of memory usage.
d) None of the above.

Answer: a) Insertion and deletion are slower than in an array.



Lec 11 - Implementation of Priority Queue

1. Which of the following data structures is commonly used to implement a Priority Queue?
a) Linked List
b) Queue
c) Binary Heap
d) Stack
Solution: c) Binary Heap

2. Which of the following operations is commonly supported by a Priority Queue?
a) Enqueue
b) Dequeue
c) Insert
d) All of the above
Solution: d) All of the above

3. What is the time complexity of inserting an element into a binary heap?
a) O(1)
b) O(log n)
c) O(n)
d) O(n log n)
Solution: b) O(log n)

4. What is the time complexity of deleting the highest-priority element from a binary heap?
a) O(1)
b) O(log n)
c) O(n)
d) O(n log n)
Solution: b) O(log n)

5. Which of the following is an advantage of using a Fibonacci Heap to implement a Priority 
Queue?
a) Faster insert operation than a binary heap
b) Lower memory usage than a binary heap
c) Faster delete operation than a binary heap
d) All of the above
Solution: c) Faster delete operation than a binary heap

6. Which of the following algorithms makes use of a Priority Queue?
a) Dijkstra's shortest path algorithm
b) Binary search algorithm
c) Bubble sort algorithm
d) Linear search algorithm
Solution: a) Dijkstra's shortest path algorithm

7. Which of the following data structures is commonly used to implement a Priority Queue 
in C++?
a) std::queue
b) std::vector
c) std::list
d) std::priority_queue
Solution: d) std::priority_queue



8. Which of the following operations is not supported by a Priority Queue?
a) Changing the priority of an element
b) Inserting an element
c) Removing an element with the lowest priority
d) Removing an element with the highest priority
Solution: c) Removing an element with the lowest priority

9. Which of the following is an application of Priority Queues?
a) Sorting large datasets
b) Implementing a stack
c) Implementing a queue
d) Task scheduling in an operating system
Solution: d) Task scheduling in an operating system

10. Which of the following is a disadvantage of using a binary heap to implement a Priority 
Queue?
a) Slower delete operation than a Fibonacci Heap
b) Higher memory usage than a Fibonacci Heap
c) Slower insert operation than a Fibonacci Heap
d) All of the above
Solution: a) Slower delete operation than a Fibonacci Heap



Lec 12 - Operations on Binary Tree

1. What is the height of a binary tree with only one node?
a) 0
b) 1
c) 2
d) Undefined

Answer: a) 0

2. Which traversal method visits the nodes in the order left subtree, root, right subtree?
a) Pre-order traversal
b) In-order traversal
c) Post-order traversal
d) Level-order traversal

Answer: b) In-order traversal

3. Which traversal method visits the nodes in the order root, left subtree, right subtree?
a) Pre-order traversal
b) In-order traversal
c) Post-order traversal
d) Level-order traversal

Answer: a) Pre-order traversal

4. What is the time complexity of searching for a node in a Binary Tree?
a) O(1)
b) O(log n)
c) O(n)
d) It depends on the implementation

Answer: c) O(n)

5. What is the maximum number of nodes at level k in a Binary Tree?
a) 2^k
b) k^2
c) k+1
d) None of the above

Answer: a) 2^k

6. Which of the following is a way to delete a node in a Binary Tree?
a) Deleting the node and its children
b) Replacing the node with its left child
c) Replacing the node with its right child
d) All of the above

Answer: d) All of the above



7. What is the time complexity of finding the height of a Binary Tree?
a) O(1)
b) O(log n)
c) O(n)
d) It depends on the implementation

Answer: c) O(n)

8. What is the maximum number of nodes in a Binary Tree with height h?
a) 2^h
b) h^2
c) h+1
d) None of the above

Answer: a) 2^h - 1

9. Which of the following is a way to insert a node in a Binary Tree?
a) As the left child of a leaf node
b) As the right child of a leaf node
c) As the left child of a non-leaf node
d) All of the above

Answer: d) All of the above

10. Which of the following is an advantage of using a Binary Tree over a linked list?
a) Binary Tree can be searched faster than a linked list
b) Binary Tree can be sorted faster than a linked list
c) Binary Tree can store data in a hierarchical structure
d) All of the above

Answer: d) All of the above



Lec 13 - Cost of Search

1. What is the cost of search in computer science?

a. Amount of time, resources, and computational power required to search for a specific item in a 
data structure
b. The amount of data in a data structure
c. The size of the data structure
d. The type of data structure used

Answer: a.

2. Which of the following measures is a common measure of search cost?

a. Time complexity
b. Space complexity
c. Worst-case analysis
d. All of the above

Answer: d.

3. Which search algorithm is commonly used for searching a sorted array?

a. Binary search
b. Linear search
c. Depth-first search
d. Breadth-first search

Answer: a.

4. Which data structure is commonly used for implementing hash tables?

a. Linked list
b. Queue
c. Stack
d. Array

Answer: a.

5. What is the time complexity of binary search?

a. O(1)
b. O(log n)
c. O(n)
d. O(n log n)

Answer: b.

6. Which of the following is a disadvantage of linear search?



a. It has a time complexity of O(1)
b. It is easy to implement
c. It has a time complexity of O(n)
d. It is efficient for large datasets

Answer: c.

7. Which of the following is a disadvantage of binary search?

a. It can only be used with sorted arrays
b. It has a time complexity of O(n)
c. It is difficult to implement
d. It is not efficient for large datasets

Answer: a.

8. Which data structure is commonly used for implementing binary search trees?

a. Array
b. Linked list
c. Queue
d. Stack

Answer: b.

9. What is the time complexity of searching a hash table with a good hash function?

a. O(1)
b. O(log n)
c. O(n)
d. O(n log n)

Answer: a.

10. Which of the following measures is not a common measure of search cost?

a. Time efficiency
b. Space efficiency
c. Worst-case analysis
d. Best-case analysis

Answer: d.



Lec 14 - Recursive Calls

1. What is recursion?
a. A process of dividing a problem into smaller subproblems
b. A process of repeating a set of instructions
c. A process of sorting data in ascending order
d. None of the above

Answer: a

2. What is the base case in recursion?
a. The case where the function calls itself
b. The case where the function returns a value without calling itself
c. The case where the function uses a loop instead of recursion
d. None of the above

Answer: b

3. Which data structure is commonly used in recursion?
a. Stack
b. Queue
c. Linked list
d. Array

Answer: a

4. What is the maximum number of recursive calls that can be made?
a. 100
b. 1000
c. It depends on the available memory
d. There is no limit

Answer: c

5. Which of the following is a disadvantage of recursion?
a. It is easy to understand and implement
b. It may cause stack overflow errors
c. It always results in better performance than iterative solutions
d. None of the above

Answer: b

6. Which of the following algorithms uses recursion?
a. Quick sort
b. Merge sort
c. Bubble sort
d. Selection sort

Answer: a and b



7. Which of the following is true about recursive functions?
a. They are always faster than iterative functions
b. They require less memory than iterative functions
c. They may be more readable and concise than iterative functions
d. None of the above

Answer: c

8. What is tail recursion?
a. A type of recursion where the recursive call is the last operation performed by the function
b. A type of recursion where the function calls itself multiple times
c. A type of recursion where the function uses a loop instead of recursion
d. None of the above

Answer: a

9. What is the difference between direct and indirect recursion?
a. Direct recursion occurs when a function calls itself, while indirect recursion occurs when two 
or more functions call each other.
b. Direct recursion occurs when two or more functions call each other, while indirect recursion 
occurs when a function calls itself.
c. Direct and indirect recursion are the same thing.
d. None of the above

Answer: a

10. Which of the following is an example of a recursive data structure?
a. Linked list
b. Stack
c. Queue
d. Array

Answer: a and b



Lec 15 - Level-order Traversal of a Binary Tree

1. What is level-order traversal of a binary tree?
A. Visiting the root node first
B. Visiting the nodes level by level
C. Visiting the left child first
D. Visiting the right child first
Answer: B

2. Which data structure can be used to implement level-order traversal?
A. Stack
B. Queue
C. Linked list
D. Binary search tree
Answer: B

3. What is the time complexity of level-order traversal?
A. O(log n)
B. O(n)
C. O(n^2)
D. O(2^n)
Answer: B

4. In which order are the nodes visited in level-order traversal?
A. Left to right, bottom to top
B. Right to left, top to bottom
C. Left to right, top to bottom
D. Right to left, bottom to top
Answer: C

5. Which traversal technique can be used to print the nodes of a binary tree in level-order?
A. In-order traversal
B. Post-order traversal
C. Pre-order traversal
D. Level-order traversal
Answer: D

6. What is the space complexity of level-order traversal?
A. O(1)
B. O(n)
C. O(n^2)
D. O(2^n)
Answer: B

7. Level-order traversal can be used to solve which type of problem?
A. Finding the maximum depth of a binary tree
B. Finding the minimum depth of a binary tree
C. Finding the sum of all nodes in a binary tree
D. Finding the lowest common ancestor of two nodes in a binary tree
Answer: A



8. Which of the following is an advantage of level-order traversal?
A. It is faster than other traversal techniques
B. It uses less memory than other traversal techniques
C. It can be used to find the shortest path between two nodes
D. It can be used to sort the nodes in a binary tree
Answer: C

9. What is the main disadvantage of level-order traversal?
A. It is difficult to implement
B. It requires more memory than other traversal techniques
C. It is slower than other traversal techniques
D. It does not work for binary trees with an odd number of nodes
Answer: B

10. What is the first node visited in level-order traversal?
A. The root node
B. The left child of the root node
C. The right child of the root node
D. It depends on the binary tree
Answer: A



Lec 16 - Deleting a node in BST

1. In a BST, which node is deleted when the node to be deleted has no children?
a) The root node
b) The node to be deleted
c) The parent of the node to be deleted
d) None of the above

Answer: b) The node to be deleted

2. When deleting a node with one child in a BST, which child of the deleted node replaces 
it?
a) The left child
b) The right child
c) It depends on the node's value
d) None of the above

Answer: c) It depends on the node's value

3. When deleting a node with two children in a BST, which node is used to replace the 
deleted node?
a) The left child of the deleted node
b) The right child of the deleted node
c) The smallest node in the right subtree of the deleted node
d) The largest node in the left subtree of the deleted node

Answer: c) The smallest node in the right subtree of the deleted node

4. Which traversal algorithm is commonly used to delete a node in a BST?
a) Inorder traversal
b) Preorder traversal
c) Postorder traversal
d) Level-order traversal

Answer: a) Inorder traversal

5. In a BST, what is the time complexity of deleting a node with one child?
a) O(1)
b) O(log n)
c) O(n)
d) It depends on the height of the tree

Answer: b) O(log n)

6. What is the time complexity of deleting a node with two children in a BST?
a) O(1)
b) O(log n)
c) O(n)
d) It depends on the height of the tree



Answer: d) It depends on the height of the tree

7. What happens when a leaf node is deleted in a BST?
a) The node is deleted and the tree is balanced
b) The node is deleted and the tree is left unbalanced
c) The tree becomes a binary tree
d) None of the above

Answer: a) The node is deleted and the tree is balanced

8. In a self-balancing BST, what type of rotation is performed when deleting a node with one 
child?
a) Left rotation
b) Right rotation
c) Double rotation
d) No rotation is performed

Answer: d) No rotation is performed

9. When deleting a node in a BST, what is the worst-case time complexity if the tree is 
unbalanced?
a) O(1)
b) O(log n)
c) O(n)
d) It depends on the size of the tree

Answer: c) O(n)

10. In a BST, what is the minimum number of children a node can have?
a) 0
b) 1
c) 2
d) There is no minimum number of children

Answer: a) 0



Lec 17 - Reference Variables

1. Which of the following data types is a reference type in Java?
a) int
b) double
c) String
d) char

Answer: c) String

2. What does a reference variable in Java hold?
a) The actual value of an object
b) The memory address of an object
c) The size of an object
d) The type of an object

Answer: b) The memory address of an object

3. When an object is assigned to a reference variable, what is stored in the variable?
a) A copy of the object
b) A reference to the object
c) The value of the object
d) None of the above

Answer: b) A reference to the object

4. What is the difference between a reference variable and a primitive variable?
a) A reference variable holds the actual value of an object, while a primitive variable holds a 
reference to an object.
b) A reference variable holds a reference to an object, while a primitive variable holds the actual 
value of a data type.
c) A reference variable holds a value of an object, while a primitive variable holds a reference to 
an object.
d) There is no difference between the two.

Answer: b) A reference variable holds a reference to an object, while a primitive variable holds the 
actual value of a data type.

5. In Java, can a reference variable be null?
a) Yes
b) No

Answer: a) Yes

6. What happens when a reference variable is assigned to another reference variable?
a) Both variables hold a reference to the same object
b) Both variables hold a copy of the same object
c) The original variable is deleted
d) None of the above



Answer: a) Both variables hold a reference to the same object

7. What is the syntax for creating a reference variable in Java?
a) int x = 5;
b) double y = 3.14;
c) String s = "Hello";
d) char c = 'a';

Answer: c) String s = "Hello";

8. What happens when a reference variable is passed as a parameter to a method in Java?
a) The method receives a copy of the object
b) The method receives a reference to the object
c) The method receives the actual value of the object
d) None of the above

Answer: b) The method receives a reference to the object

9. What is the default value of a reference variable in Java?
a) null
b) 0
c) false
d) None of the above

Answer: a) null

10. Can a reference variable be used to access static methods in Java?
a) Yes
b) No

Answer: a) Yes



Lec 18 - Reference Variables

1. What is a reference variable in Java?
a. A variable that holds the actual value of a data type.
b. A variable that holds the memory address of an object.
c. A variable that holds both the value of a data type and the memory address of an object.
Answer: b

2. What is the default value of a reference variable in Java?
a. 0
b. false
c. null
Answer: c

3. Can a reference variable be reassigned to a different object in Java?
a. Yes
b. No
c. It depends on the data type of the reference variable.
Answer: a

4. How does Java handle passing a reference variable as a parameter to a method?
a. It passes the actual value of the reference variable.
b. It passes the memory address of the object held by the reference variable.
c. It does not allow passing reference variables as parameters to methods.
Answer: b

5. Can a reference variable be used to access static methods in Java?
a. Yes
b. No
c. It depends on the access modifier of the static method.
Answer: a

6. How does Java handle garbage collection for objects referenced by reference variables?
a. It automatically frees up memory allocated to objects that are no longer being referenced.
b. It requires manual intervention to free up memory allocated to objects.
c. It does not perform garbage collection for objects referenced by reference variables.
Answer: a

7. What is the difference between an instance variable and a reference variable in Java?
a. An instance variable holds the memory address of an object, while a reference variable is a 
variable declared in a class.
b. An instance variable is a variable declared in a method, while a reference variable is a 
variable declared in a class.
c. An instance variable is a variable declared in a class, while a reference variable is a variable 
declared in a method or block that holds a reference to an object.
Answer: c

8. Can a reference variable be used to access private members of a class in Java?
a. Yes
b. No
c. It depends on the access modifier of the private member.
Answer: b



9. How can we check if a reference variable is null in Java?
a. By using the null keyword.
b. By using the equals() method.
c. By using the == operator.
Answer: c

10. Can a reference variable be assigned to a primitive value in Java?
a. Yes
b. No
c. It depends on the data type of the reference variable.
Answer: b



Lec 19 - Usage of const keyword

1. What does the const keyword do in C++?
a) Declares a variable that cannot be modified
b) Declares a variable that can only be modified in specific contexts
c) Declares a variable that is used for debugging purposes
Answer: a

2. Which of the following is a benefit of using const variables?
a) Improved program performance
b) Increased memory usage
c) Reduced bugs and improved program stability
Answer: c

3. Can const variables be modified after they are initialized?
a) Yes
b) No
Answer: b

4. What happens if you try to modify a const variable in C++?
a) The program crashes
b) The compiler generates an error
c) The modification is allowed
Answer: b

5. Which of the following types of variables is typically declared as const in C++?
a) Variables that are used for input/output
b) Global variables
c) Variables that are used as constants in the program
Answer: c

6. Is the const keyword required when passing a variable by reference in C++?
a) Yes
b) No
Answer: a

7. Can a member function of a C++ class be declared as const?
a) Yes
b) No
Answer: a

8. Which of the following is an example of a const pointer in C++?
a) int* const ptr;
b) const int* ptr;
c) const int* const ptr;
Answer: a

9. Can a const variable be initialized with a value at runtime in C++?
a) Yes
b) No
Answer: b



10. Is the const keyword used in other programming languages besides C++?
a) Yes
b) No
Answer: a



Lec 20 - AVL Tree

1. What is AVL Tree?
a) Binary Tree
b) Self-balancing Binary Search Tree
c) Hash Tree
d) None of the above

Answer: b) Self-balancing Binary Search Tree

2. In AVL Tree, what is the maximum difference between the height of the left and right 
subtrees?
a) 1
b) 2
c) 3
d) 4

Answer: a) 1

3. What is the time complexity of search operation in AVL Tree?
a) O(log n)
b) O(n)
c) O(n log n)
d) O(1)

Answer: a) O(log n)

4. In AVL Tree, what operation is performed to balance the tree?
a) Rotation
b) Inversion
c) Deletion
d) None of the above

Answer: a) Rotation

5. What is the worst-case time complexity of insertion operation in AVL Tree?
a) O(log n)
b) O(n)
c) O(n log n)
d) O(1)

Answer: a) O(log n)

6. What is the height of an AVL Tree with n nodes in the worst-case scenario?
a) log(n)
b) log(n) + 1
c) 2log(n)
d) 2log(n) + 1

Answer: b) log(n) + 1



7. Which of the following statements is true about AVL Tree?
a) AVL Tree is a balanced binary search tree
b) AVL Tree is an unbalanced binary search tree
c) AVL Tree is a type of heap data structure
d) AVL Tree is a type of graph data structure

Answer: a) AVL Tree is a balanced binary search tree

8. What is the time complexity of deletion operation in AVL Tree?
a) O(log n)
b) O(n)
c) O(n log n)
d) O(1)

Answer: a) O(log n)

9. Which of the following is not a balancing rule in AVL Tree?
a) Right-Right (RR)
b) Left-Right (LR)
c) Left-Left (LL)
d) Right-Left (RL)

Answer: d) Right-Left (RL)

10. Can AVL Tree have duplicate keys?
a) Yes
b) No

Answer: b) No



Lec 21 - AVL Tree Building Example

1. What is the first node added to the AVL Tree in the building example?
a) 1
b) 2
c) 5
d) 8

Answer: c) 5

2. What is the second node added to the AVL Tree in the building example?
a) 1
b) 2
c) 3
d) 8

Answer: b) 2

3. How many rotations are performed to maintain balance after inserting node 1 in the AVL 
Tree?
a) 0
b) 1
c) 2
d) 3

Answer: b) 1

4. What is the height of the AVL Tree after inserting node 3?
a) 1
b) 2
c) 3
d) 4

Answer: b) 2

5. Which rotation is performed after inserting node 6 to maintain balance in the AVL Tree?
a) Left rotation
b) Right rotation
c) Left-right rotation
d) Right-left rotation

Answer: a) Left rotation

6. What is the height of the AVL Tree after inserting node 9?
a) 3
b) 4
c) 5
d) 6

Answer: b) 4



7. What is the root node of the AVL Tree after inserting all the nodes?
a) 1
b) 2
c) 5
d) 8

Answer: c) 5

8. Which is the last node added to the AVL Tree in the building example?
a) 6
b) 8
c) 9
d) 3

Answer: c) 9

9. What is the maximum height of an AVL Tree with 7 nodes?
a) 2
b) 3
c) 4
d) 5

Answer: b) 3

10. How many rotations are performed in total to maintain balance while building the AVL 
Tree in the example?
a) 2
b) 3
c) 4
d) 5

Answer: c) 4



Lec 22 - Cases of rotations

1. Which of the following is not a type of rotation in a binary search tree?
A. Left rotation
B. Right rotation
C. Upward rotation
D. Double rotation
Answer: C

2. When is a single left rotation used in a binary search tree?
A. When the imbalance occurs in the immediate left child
B. When the imbalance occurs in the immediate right child
C. When the imbalance occurs in the grandchild of the left child
D. When the imbalance occurs in the grandchild of the right child
Answer: A

3. Which of the following is a case of double rotation in a binary search tree?
A. Left-Left case
B. Left-Right case
C. Right-Left case
D. Right-Right case
Answer: B

4. In a left-right double rotation, what is the first step performed?
A. A single left rotation on the right child
B. A single right rotation on the left child
C. A double right rotation on the left child
D. A double left rotation on the right child
Answer: B

5. Which of the following is not a benefit of rotations in a binary search tree?
A. Maintaining balance
B. Ensuring efficient search operations
C. Reducing the height of the tree
D. Increasing the height of the tree
Answer: D

6. What is the maximum number of rotations required to balance a node in a binary search 
tree?
A. 1
B. 2
C. 3
D. 4
Answer: B

7. When is a single right rotation used in a binary search tree?
A. When the imbalance occurs in the immediate left child
B. When the imbalance occurs in the immediate right child
C. When the imbalance occurs in the grandchild of the left child
D. When the imbalance occurs in the grandchild of the right child
Answer: B



8. Which of the following is a case of single rotation in a binary search tree?
A. Left-Left case
B. Left-Right case
C. Right-Left case
D. Right-Right case
Answer: A

9. In a left-left single rotation, what is the new root of the subtree?
A. The left child of the original root
B. The right child of the original root
C. The parent of the original root
D. The original root itself
Answer: A

10. Which of the following is a disadvantage of using rotations in a binary search tree?
A. Increased tree height
B. Reduced search efficiency
C. Increased complexity
D. None of the above
Answer: D




