MTH101
 Calculus And Analytical Geometry

Important mcqs

Lec 1 - Calculus And Analytical Geometry

1. Which of the following is the origin in the Cartesian coordinate system? a) $(0,1) b)(1,0) c)(0,0) d)$ $(1,1)$ Answer: c) (0,0)
2. What is the slope of a horizontal line? a) 0 b) 1 c) Undefined d) Infinity Answer: a) 0
3. Which of the following equations is in slope-intercept form? a) $2 x+3 y=6$ b) $y=4 x-2$ c) $5 x-2 y=8$ d) $x-3 y=9$ Answer: b) $\mathbf{y}=\mathbf{4 x} \mathbf{- 2}$
4. What is the equation of the line with a slope of $\mathbf{2}$ and a y-intercept of $\mathbf{- 3}$? a) $y=2 x+3 b) y=2 x-3 c$) $\mathrm{x}=2 \mathrm{y}+3$ d) $\mathrm{x}=2 \mathrm{y}-3$ Answer: b) $\mathrm{y}=\mathbf{2 x} \mathbf{- 3}$
5. Which of the following is not a quadrant in the Cartesian coordinate system? a) First quadrant b) Second quadrant c) Third quadrant d) Fifth quadrant Answer: d) Fifth quadrant
6. What is the equation of the line passing through points $(2,3)$ and $(4,5) ? a) y=2 x+1 b) y=2 x-1 c) y$ $=x+1$ d) $y=x-1$ Answer: b) $\mathbf{y}=\mathbf{2 x} \mathbf{- 1}$
7. Which of the following is the equation of a vertical line? a) $y=2 x+3$ b) $y=-4$ c) $x-3 y=6 d) y=x-$ 2 Answer: b) $y=-4$
8. What is the slope of a vertical line? a) Undefined b) 0 c) 1 d) Infinity Answer: a) Undefined
9. What is the x-coordinate of a point on the \mathbf{y}-axis? a) 0 b) 1 c) -1 d) Undefined Answer: a) $\mathbf{0}$
10. What is the y-coordinate of the point (5,8)? a) 5 b) 8 c) -5 d) -8 Answer: b) 8

Lec 2 - Absolute Value

1. What is the absolute value of -9 ?
a. -9
b. 9
c. 0
d. Undefined

Answer: b. 9
2. What is the absolute value of 0 ?
a. -1
b. 0
c. 1
d. Undefined

Answer: b. 0
3. What is the derivative of the absolute value function?
a. $1 / x$
b. $-1 / x$
c. 0
d. step function

Answer: d. step function
4. Which of the following is true about the absolute value function?
a. It is a continuous function for all real numbers.
b. It is a discontinuous function for all real numbers.
c. It is a differentiable function for all real numbers.
d. It is an odd function.

Answer: a. It is a continuous function for all real numbers.
5. What is the range of the absolute value function?
a. (-?, ?)
b. $[0$, ?)
c. $[0,1)$
d. $[-1,1]$

Answer: b. [0, ?)
6. Which of the following is true about the absolute value function graph?
a. It is a straight line passing through the origin.
b. It is a straight line passing through the point $(1,1)$.
c. It is a V -shaped curve with the vertex at the origin.
d. It is a U-shaped curve with the vertex at the origin.

Answer: c. It is a V-shaped curve with the vertex at the origin.
7. What is the limit of the absolute value function as x approaches infinity?
a. -?
b. ?
c. 0
d. Does not exist

Answer: b. ?
8. Which of the following is true about the absolute value of a negative number?
a. It is negative.
b. It is positive.
c. It is zero.
d. It is undefined.

Answer: b. It is positive.
9. What is the distance between points $(3,4)$ and $(1,2)$?
a. 1
b. 2
c. ?2
d. ?10

Answer: c. ?2
10. Which of the following is true about the integral of the absolute value function?
a. It is always positive.
b. It is always negative.
c. It is always zero.
d. It can be positive, negative, or zero depending on the limits of integration.

Answer: d. It can be positive, negative, or zero depending on the limits of integration.

Lec 3 - Coordinate Planes and Graphs

1. What is the equation of the vertical line passing through the point $(-3,5)$?
a) $x=-3$
b) $y=-3$
c) $x=5$
d) $y=5$

Solution: a) $x=-3$
2. What are the coordinates of the origin on a coordinate plane?
a) $(1,1)$
b) $(-1,-1)$
c) $(0,0)$
d) $(2,2)$

Solution: c) (0,0)
3. What is the slope of the line passing through the points $(3,5)$ and $(1,2)$?
a) $3 / 2$
b) $-3 / 2$
c) $2 / 3$
d) $-2 / 3$

Solution: b) -3/2
4. Which quadrant contains the point (-4,-2)?
a) First
b) Second
c) Third
d) Fourth

Solution: c) Third

5. What is the distance between points $(2,5)$ and $(-3,1)$?
a) 2
b) 5
c) $\mathrm{sqrt}(26)$
d) $\operatorname{sqrt}(29)$

Solution: d) sqrt(29)
6. What is the slope of the line perpendicular to the line $y=3 x-2$?
a) $3 / 2$
b) $-3 / 2$
c) $-1 / 3$
d) $1 / 3$

Solution: c) -1/3
7. Which of the following is an equation of a vertical line?
a) $y=2 x+3$
b) $x=4$
c) $y=-x+1$
d) $x+y=7$

Solution: b) $x=4$
8. What is the equation of the line passing through the points $(2,-3)$ and $(4,5)$?
a) $y=-2 x+1$
b) $y=2 x-7$
c) $y=-4 x-11$
d) $y=4 x-11$

Solution: d) $y=4 x-11$
9. What is the slope-intercept form of the equation of the line passing through the point $(2,4)$ with a slope of $-2 ?$
a) $y=-2 x-4$
b) $y=-2 x+8$
c) $y=2 x-4$
d) $y=2 x+4$

Solution: a) $y=-2 x+8$
10. What is the equation of the line passing through the points $(-1,3)$ and $(5,-1)$?
a) $y=-x+2$
b) $y=x+2$
c) $y=-x-2$
d) $y=x-2$

Solution: c) $y=-x+2$

Lec 4 - Lines

1. What is the slope of a horizontal line?
a) Positive
b) Negative
c) Zero
d) Undefined

Solution: c) Zero
2. What is the equation of a line with a slope of 2 and a y-intercept of $\mathbf{3}$?
a) $y=2 x+3$
b) $y=3 x+2$
c) $y=2 x-3$
d) $y=-2 x+3$

Solution: a) $y=2 x+3$
3. What is the y-intercept of a line with an equation of $y=-5 x+7$?
a) -5
b) 5
c) 7
d) -7

Solution: c) 7
4. What is the slope of a line that passes through points $(3,5)$ and $(8,11)$?
a) 3
b) 2
c) 1
d) 6

Solution: b) 2
5. What is the slope of a vertical line?
a) Positive
b) Negative
c) Zero
d) Undefined

Solution: d) Undefined
6. What is the equation of a line that passes through the points $(-2,4)$ and $(4,-2)$?
a) $y=x+2$
b) $y=-x-2$
c) $y=-x+2$
d) $y=x-2$

Solution: b) $y=-x-2$
7. What is the y-intercept of a line with an equation of $y=2 x-6$?
a) -2
b) 2
c) -6
d) 6

Solution: c) -6
8. What is the slope of a line that is parallel to the line $y=4 x+2$?
a) 4
b) -4
c) $1 / 4$
d) $-1 / 4$

Solution: a) 4
9. What is the equation of a line that is perpendicular to the line $y=-3 x+5$ and passes through the point $(2,4)$?
a) $y=-1 / 3 x+10 / 3$
b) $y=-3 x+10$
c) $y=1 / 3 x+2 / 3$
d) $y=3 x-2$

Solution: a) $y=-1 / 3 x+10 / 3$
10. What is the slope of a line that passes through the points $(0,4)$ and $(4,0)$?
a) 4
b) -4
c) 1
d) -1

Solution: b) -4

Lec 5 - Distance; Circles, Quadratic Equations

1. What is the distance between points $(3,4)$ and $(-2,1)$?
A. 3
B. 5
C. 7
D. 9

Solution: B. Using the distance formula, the distance between the two points is $\mathbf{d}=\operatorname{sqrt}((-2-$ $\left.3)^{\wedge} 2+(1-4)^{\wedge} 2\right)=\operatorname{sqrt}(25+9)=\operatorname{sqrt}(34) ? 5.83$ units.
2. What is the center and radius of the circle with equation $(x+2)^{\wedge} \mathbf{2}+(y-5)^{\wedge} \mathbf{2}=16$?
A. Center: $(-2,5)$; Radius: 16
B. Center: $(-2,5)$; Radius: 4
C. Center: (2, -5); Radius: 4
D. Center: $(2,-5)$; Radius: 16

Solution: A. The center of the circle is ($-2,5$), and the radius is the square root of 16 , which is 4 .
3. What is the discriminant of the quadratic equation $2 x^{\wedge} 2+3 x-5=0$?
A. -31
B. -11
C. 11
D. 31

Solution: D. The discriminant is $b^{\wedge} 2-4 a c=3^{\wedge} 2-4(2)(-5)=31$, which is positive. Therefore, the equation has two real solutions.
4. What is the distance between points $(-1,2)$ and $(3,-4)$?
A. 5
B. 6
C. 7
D. 8

Solution: B. Using the distance formula, the distance between the two points is $\mathbf{d}=\operatorname{sqrt}\left({ }^{(3-}\right.$ $\left.(-1))^{\wedge} 2+(-4-2)^{\wedge} 2\right)=\operatorname{sqrt}(16+36)=\operatorname{sqrt}(52) ? 7.21$ units.
5. What is the equation of the circle with center $(-3,4)$ and radius 6 ?
A. $(x+3)^{\wedge} 2+(y-4)^{\wedge} 2=6$
B. $(x-3)^{\wedge} 2+(y+4)^{\wedge} 2=36$
C. $(x+3)^{\wedge} 2+(y-4)^{\wedge} 2=36$
D. $(x-3)^{\wedge} 2+(y+4)^{\wedge} 2=6$

Solution: C. The equation of a circle with center (h, k) and radius r is $(x-h)^{\wedge} \mathbf{2}+(y-k)^{\wedge} \mathbf{2}=$ $r^{\wedge} 2$. Therefore, the equation of the circle with center $(-3,4)$ and radius 6 is $(x+3)^{\wedge} 2+(y-$ 4)^2 $=36$.
6. What are the solutions of the quadratic equation $x^{\wedge} 2-5 x+6=0$?
A. $x=2, x=3$
B. $x=2, x=4$
C. $x=3, x=4$
D. $x=4, x=5$

Solution: A. Factoring the quadratic equation gives $(x-2)(x-3)=0$, so the solutions are $x=$ 2 and $x=3$.
7. What is the center and radius of the circle with equation $x^{\wedge} 2+y^{\wedge} 2-6 x+8 y-19=0$?
A. Center: (3, -4); Radius: 5
B. Center: $(-3,4)$;

Lec 6 - Functions and Limits

1. What is the limit of the function $f(x)=2 x+1$ as x approaches 3 ?
a) 5
b) 7
c) 8
d) 9

Answer: b) 7
Solution: When x approaches 3 , the value of $f(x)$ approaches $(2 * 3+1)=7$.
2. Which of the following functions is continuous at $\mathbf{x}=0$?
a) $f(x)=1 / x$
b) $f(x)=x^{\wedge} 2$
c) $f(x)=|x|$
d) $f(x)=\operatorname{sqrt}(x)$

Answer: b) $f(x)=x^{\wedge} 2$
Solution: The function $f(x)=x^{\wedge} 2$ is continuous at $x=0$ because the limit of $f(x)$ as x approaches 0 is equal to $f(0)=0$.
3. What is the derivative of the function $f(x)=x^{\wedge} 3$?
a) $3 x^{\wedge} 2$
b) $2 x^{\wedge} 3$
c) $4 x^{\wedge} 3$
d) $x^{\wedge} 2$

Answer: a) $3 x^{\wedge}$ 2
Solution: The derivative of $f(x)=x^{\wedge} 3$ is $f^{\prime}(x)=3 x^{\wedge} 2$.
4. What is the integral of the function $f(x)=1 / x$?
a) $\ln (x)+C$
b) $x^{\wedge} 2 / 2+C$
c) $2 x+C$
d) $e^{\wedge} x+C$

Answer: a) $\ln (x)+C$
Solution: The integral of $f(x)=1 / x$ is $F(x)=\ln |x|+C$.
5. What is the domain of the function $f(x)=\operatorname{sqrt}(x-4)$?
a) (-infinity, 4]
b) $[4$, infinity)
c) $[0$, infinity)
d) (-infinity, infinity)

Answer: b) [4, infinity)
Solution: The function $f(x)=\operatorname{sqrt}(x-4)$ is defined only for $x>=4$, which gives the domain [4, infinity).
6. What is the limit of the function $f(x)=\sin (x) / x$ as x approaches 0 ?
a) 0
b) 1
c) -1
d) does not exist

Answer: b) 1
Solution: The limit of $f(x)=\sin (x) / x$ as x approaches 0 is 1 , which can be proved using L'Hopital's rule or the squeeze theorem.
7. Which of the following functions is not differentiable at $\mathbf{x}=\mathbf{0}$?
a) $f(x)=|x|$
b) $f(x)=x^{\wedge} 2$
c) $f(x)=\operatorname{sqrt}(x)$
d) $f(x)=1 / x$

Answer: a) $f(x)=|x|$
Solution: The function $f(x)=|x|$ is not differentiable at $x=0$ because it has a sharp point at that point.
8. What is the integral of the function $f(x)=2 x$?
a) $x^{\wedge} 2+C$
b) $x^{\wedge} 2+1$
c) $x^{\wedge} 3+C$
d) $2 x^{\wedge} 2+C$

Answer: a) $x^{\wedge} 2+C$
Solution: The integral of $f(x)=2 x$ is $F(x)=x^{\wedge} 2+C$.
9. What is the limit of the function $f(x)=\left(x^{\wedge} 2-4\right) /(x-2)$ as x approaches 2 ?
a) 0
b) 1
c) 2
d) does not exist

Answer: c)

Lec 7 - Operations on Functions

1. What is the composition of two functions f and g ?
A. $f(x)+g(x)$
B. $f(x) g(x)$
C. $f(g(x))$
D. $g(f(x))$

Solution: C
2. What is the domain of the function $f(x)=1 / x$?
A. all real numbers except 0
B. all real numbers
C. all positive real numbers
D. all negative real numbers

Solution: A
3. Which of the following is an example of a polynomial function?
A. $f(x)=1 / x$
B. $f(x)=x^{\wedge} 2+3 x-5$
C. $f(x)=$? x
D. $f(x)=e^{\wedge} x$

Solution: B
4. What is the range of the function $f(x)=\sin (x)$?
A. $[-1,1]$
B. $(-$?, ?)
C. $[0,1]$
D. $[-? / 2, ? / 2]$

Solution: A
5. What is the inverse of the function $f(x)=2 x-3$?
A. $f^{\wedge}-1(x)=x / 2+3 / 2$
B. $f^{\wedge}-1(x)=2 x+3$
C. $f^{\wedge}-1(x)=(x-3) / 2$
D. $f^{\wedge}-1(x)=3-x / 2$

Solution: C
6. Which of the following is an example of an odd function?
A. $f(x)=x^{\wedge} 2$
B. $f(x)=x^{\wedge} 3$
C. $f(x)=\sin (x)$
D. $f(x)=\cos (x)$

Solution: B
7. What is the difference between the domain and range of a function?
A. There is no difference.
B. The domain is the set of all input values, while the range is the set of all output values.
C. The domain is the set of all output values, while the range is the set of all input values.
D. The domain and range are the same things.

Solution: B
8. What is the equation of the line that passes through points $(1,2)$ and $(3,4)$?
A. $y=2 x-1$
B. $y=x+1$
C. $y=2 x+1$
D. $y=x-1$

Solution: D
9. What is the composite function of $f(x)=x^{\wedge} 2$ and $g(x)=x+1$?
A. $f(g(x))=(x+1)^{\wedge} 2$
B. $f(g(x))=x^{\wedge} 2+1$
C. $g(f(x))=x^{\wedge} 2+1$
D. $g(f(x))=(x+1)^{\wedge} 2$

Solution: A
10. What is the degree of the polynomial function $f(x)=3 x^{\wedge} 4+2 x^{\wedge} 3-5 x^{\wedge} 2+7$?
A. 0
B. 2
C. 3
D. 4

Solution: D

Lec 8 - Graphing Functions

1. Which axis represents the independent variable or input values in a graph?
a. x-axis
b. y-axis
c. origin
d. none of the above

Answer: a. x-axis
2. What is the purpose of graphing functions?
a. To visualize the behavior of a function
b. To solve equations
c. To memorize formulas
d. None of the above

Answer: a. To visualize the behavior of a function

3. How do we find the x-intercepts of a function?
a. Set the function equal to zero and solve for x
b. Set x equal to zero and solve for y
c. Take the derivative of the function
d. None of the above

Answer: a. Set the function equal to zero and solve for \mathbf{x}
4. Which type of function has a minimum at its vertex with a positive leading coefficient?
a. Even-degree functions
b. Odd-degree functions
c. Both even-degree and odd-degree functions
d. None of the above

Answer: a. Even-degree functions

5. Which type of function has a maximum at its vertex with a negative leading coefficient?
a. Even-degree functions
b. Odd-degree functions
c. Both even-degree and odd-degree functions
d. None of the above

Answer: a. Even-degree functions
6. Which type of function is symmetric about the y-axis?
a. Even functions
b. Odd functions
c. Both even and odd functions
d. None of the above

Answer: a. Even functions
7. Which type of function is symmetric about the origin?
a. Even functions
b. Odd functions
c. Both even and odd functions
d. None of the above

Answer: b. Odd functions

8. What are the critical points?
a. The points where the function is equal to zero
b. The points where the derivative is equal to zero or does not exist
c. The points where the function intersects the y-axis
d. None of the above

Answer: b. The points where the derivative is equal to zero or does not exist
9. How do we determine the location of local extrema?
a. We test the sign of the derivative on either side of the critical point
b. We test the sign of the second derivative on either side of the critical point
c. We set the derivative equal to zero and solve for x
d. None of the above

Answer: a. We test the sign of the derivative on either side of the critical point
10. How do we determine the location of inflection points?
a. We test the sign of the derivative on either side of the critical point
b. We test the sign of the second derivative on either side of the critical point
c. We set the second derivative equal to zero and solve for x
d. None of the above

Answer: b. We test the sign of the second derivative on either side of the critical point

Lec 9 - Limits (Intuitive Introduction)

1. What is the limit of $f(x)$ as x approaches 3 for the function $f(x)=x+2$?
a) 3
b) 5
c) 6
d) None of the above

Solution: b) 5
2. What is the limit of $f(x)$ as x approaches infinity for the function $f(x)=1 / x$?
a) 0
b) 1
c) infinity
d) None of the above

Solution: a) 0
3. What is the limit of $f(x)$ as x approaches 2 for the function $f(x)=(x-2) /(x+4)$?
a) 2
b) 0
c) 1
d) None of the above

Solution: b) 0
4. What is the limit of $f(x)$ as x approaches -3 for the function $f(x)=|x+3|$?
a) -3
b) 0
c) 3
d) None of the above

Solution: c) 3
5. What is the limit of $f(x)$ as x approaches 0 for the function $f(x)=\sin (x) / x$?
a) 1
b) 0
c) -1
d) None of the above

Solution: a) 1
6. What is the limit of $f(x)$ as x approaches 4 for the function $f(x)=(x-4) /\left(x^{\wedge} 2-16\right)$?
a) $1 / 12$
b) $1 / 4$
c) $1 / 8$
d) None of the above

Solution: b) $1 / 4$
7. What is the limit of $f(x)$ as x approaches -infinity for the function $f(x)=e^{\wedge} x$?
a) 0
b) -1
c) infinity
d) None of the above

Solution: a) 0

8. What is the limit of $f(x)$ as x approaches 1 for the function $f(x)=(x-1) /\left(x^{\wedge} 2-1\right)$?
a) $-1 / 2$
b) $1 / 2$
c) 1
d) None of the above

Solution: b) $1 / 2$

9. What is the limit of $f(x)$ as x approaches 2 for the function $f(x)=\left(x^{\wedge} 2-4\right) /(x-2)$?
a) 2
b) 0
c) 4
d) None of the above

Solution: c) 4

10. What is the limit of $f(x)$ as x approaches 0 for the function $f(x)=(1-\cos (x)) / x^{\wedge} 2$?
a) 0
b) $1 / 2$
c) infinity
d) None of the above

Solution: b) $1 / 2$

Lec 10 - Limits (Computational Techniques)

1. What is the limit of the function $f(x)=3 x+1$ as x approaches 2 ?
a) 7
b) 8
c) 9
d) 10

Answer: b) 8
2. What is the limit of the function $f(x)=\left(x^{\wedge} 2-9\right) /(x-3)$ as x approaches 3 ?
a) 6
b) 7
c) 8
d) 9

Answer: d) 9
3. What is the limit of the function $f(x)=(2 x-3) /(x+1)$ as x approaches -1 ?
a) -2
b) -1
c) 0
d) 1

Answer: a) -2
4. What is the limit of the function $f(x)=\sin (x) / x$ as x approaches 0 ?
a) 0
b) 1
c) pi
d) infinity

Answer: b) 1
5. What is the limit of the function $f(x)=\left(x^{\wedge} 3-8\right) /(x-2)$ as x approaches 2 ?
a) 0
b) 1
c) 2
d) infinity

Answer: c) 2
6. What is the limit of the function $f(x)=e^{\wedge}(2 x)$ as x approaches infinity?
a) 0
b) 1
c) infinity
d) -infinity

Answer: c) infinity
7. What is the limit of the function $f(x)=\left(x^{\wedge} 2+2 x-3\right) /\left(x^{\wedge} 2-4\right)$ as x approaches 2 ?
a) 0
b) $1 / 4$
c) $1 / 2$
d) 1

Answer: c) 1/2
8. What is the limit of the function $f(x)=(x-1)^{\wedge} 3 /\left(x^{\wedge} 2-x-2\right)$ as x approaches 2 ?
a) -infinity
b) -1
c) 0
d) infinity

Answer: b) -1
9. What is the limit of the function $f(x)=1 /(x-2)^{\wedge} 2$ as x approaches 2 ?
a) 0
b) 1
c) infinity
d) -infinity

Answer: c) infinity
10. What is the limit of the function $f(x)=\ln (x+1) / x$ as x approaches 0 ?
a) 0
b) 1
c) e
d) infinity

Answer: b) 1

Lec 11 - Limits (Rigorous Approach)

1. What is the limit of $f(x)$ as x approaches 2 if $f(x)=x^{\wedge} 2-3 x+2$?
A. 1
B. 2
C. 3
D. 4

Answer: D. 4
2. What is the limit of $g(x)$ as x approaches 0 if $g(x)=\sin (x) / x$?
A. 0
B. 1
C. -1
D. Does not exist

Answer: B. 1
3. What is the limit of $h(x)$ as x approaches infinity if $h(x)=5 / x$?
A. 0
B. 5
C. infinity
D. Does not exist

Answer: A. 0
4. What is the limit of $j(x)$ as x approaches 1 if $j(x)=(x-1) /\left(x^{\wedge} 2-1\right)$?
A. 0
B. 1
C. -1
D. Does not exist

Answer: B. 1
5. What is the limit of $k(x)$ as x approaches infinity if $k(x)=(3 x-2) /(4 x+1)$?
A. $3 / 4$
B. $2 / 3$
C. $3 / 1$
D. Does not exist

Answer: A. 3/4
6. What is the limit of $f(x)$ as x approaches 0 if $f(x)=(2 x+1) /(x-3)$?
A. $1 / 3$
B. $2 / 3$
C. $-1 / 3$
D. Does not exist

Answer: D. Does not exist
7. What is the limit of $g(x)$ as x approaches 2 if $g(x)=\left(x^{\wedge} 2-4\right) /(x-2)$?
A. 0
B. 1
C. 2
D. Does not exist

Answer: C. 2
8. What is the limit of $h(x)$ as x approaches 3 if $h(x)=\operatorname{sqrt}(x-3)$?
A. 0
B. 1
C. 3
D. Does not exist

Answer: D. Does not exist
9. What is the limit of $j(x)$ as x approaches infinity if $j(x)=e^{\wedge}(-2 x)$?
A. 0
B. 1
C. -1
D. Does not exist

Answer: A. 0
10. What is the limit of $k(x)$ as x approaches 1 if $k(x)=(x-1)^{\wedge} 2 /|x-1|$?
A. 0
B. 1
C. Does not exist
D. infinity

Answer: C. Does not exist

Lec 12 - Continuity

1. What is continuity?
A) A property of a function that relates to its smoothness
B) A property of a function that relates to its differentiability
C) A property of a function that relates to its integrability
D) A property of a function that relates to its convergence

Answer: A) A property of a function that relates to its smoothness
2. What is the importance of continuity in calculus?
A) It allows us to define the derivative and integral of a function
B) It allows us to calculate the area under the curve
C) It allows us to partition the interval into smaller subintervals
D) It allows us to describe the behavior of curves in space

Answer: A) It allows us to define the derivative and integral of a function
3. How is continuity related to the derivative of a function?
A) If a function is continuous, then the derivative exists
B) If a function is discontinuous, then the derivative exists
C) If a function is continuous, then the derivative does not exist
D) If a function is discontinuous, then the derivative does not exist

Answer: A) If a function is continuous, then the derivative exists
4. How is the concept of continuity related to limits?
A) The concept of continuity is closely related to the concept of limits
B) The concept of continuity is not related to the concept of limits
C) The concept of continuity is the same as the concept of limits
D) The concept of continuity is the opposite of the concept of limits

Answer: A) The concept of continuity is closely related to the concept of limits
5. What is the integral of a function?
A) The slope of the tangent line to the curve
B) The limit of the difference quotient
C) The area under the curve
D) The maximum value of the function

Answer: C) The area under the curve

6. How is the concept of continuity related to the integral of a function?
A) The concept of continuity allows us to make precise approximations of the area under the
curve
B) The concept of continuity does not relate to the integral of a function
C) The concept of continuity allows us to calculate the maximum value of the function
D) The concept of continuity allows us to partition the interval into smaller subintervals

Answer: A) The concept of continuity allows us to make precise approximations of the area under the curve

7. What is the limit of a function?
A) The value that the function approaches as the input variable approaches a particular value
B) The maximum value of the function
C) The minimum value of the function
D) The slope of the tangent line to the curve

Answer: A) The value that the function approaches as the input variable approaches a particular value

8. How is continuity related to making predictions about the behavior of a function?
A) The concept of continuity allows us to make predictions about the behavior of a function as it approaches a particular point by calculating limits precisely.
B) The concept of continuity has no relation to making predictions about the behavior of a
function
C) The concept of continuity allows us to describe the behavior of curves in space
D) The concept of continuity allows us to define the derivative and integral of a function

Answer: A) The concept of continuity allows us to make predictions about the behavior of a function as it approaches a particular point by calculating limits precisely.
9. How is continuity important in analytical geometry?
A) It allows us to define the derivative and integral of a function
B) It allows us to describe the behavior of curves in space
C) It allows us to calculate the area under the curve
D) It allows us to partition

Lec 13-Limits and Continuity of Trigonometric Functions

What is the limit of the sine function as x approaches infinity?
a) 0
b) 1
c) does not exist
d) -1

Answer: c) does not exist

What is the limit of the cosine function as x approaches $? / 2$?
a) 0
b) 1
c) does not exist
d) -1

Answer: c) does not exist

What is the derivative of the function $f(x)=\cos (x)-2 \sin (x)$?
a) $-\cos (x)-2 \cos (x)$
b) $-\sin (x)-2 \cos (x)$
c) $\sin (\mathrm{x})-2 \cos (\mathrm{x})$
d) $-\sin (x)+2 \cos (x)$

Answer: b) $-\sin (\mathrm{x})-2 \cos (\mathrm{x})$

Which of the following trigonometric functions has a vertical asymptote at $\mathrm{x}=\boldsymbol{?} / \mathbf{2}$?
a) sine
b) cosine
c) tangent
d) none of the above

Answer: c) tangent

What is the limit of the tangent function as x approaches $\boldsymbol{?} / \mathbf{2}$ from the left?
a) - ?
b) ?
c) does not exist
d) 0

Answer: a) - ?

Which of the following trigonometric functions is continuous on the entire real line?
a) sine
b) cosine
c) tangent
d) none of the above

Answer: d) none of the above

What is the derivative of the function $f(x)=\sin (x) \cos (x)$?
a) $\cos ^{\wedge} 2(x)$
b) $-\cos ^{\wedge} 2(x)$
c) $2 \sin (x) \cos (x)$
d) $-2 \sin (x) \cos (x)$

Answer: c) $2 \sin (\mathrm{x}) \cos (\mathrm{x})$

Which of the following functions is not continuous at $\mathbf{x}=0$?
a) $\sin (x) / x$
b) $\cos (x) / x$
c) $\tan (x) / x$
d) all of the above are continuous at $\mathrm{x}=0$

What is the limit of the function $f(x)=\sin (1 / x)$ as x approaches 0 ?
a) 0
b) does not exist
c) 1
d) -1

Answer: b) does not exist

What is the maximum value of the function $f(x)=2 \sin (x)+3 \cos (x)$ on the interval $[0,2 ?]$?
a) 5
b) -5
c) 2
d) 3

Answer: a) 5

Lec 14 - Tangent Lines, Rates of Change

What is the derivative of a function?
a) The instantaneous rate of change of a function at a specific point
b) The average rate of change of a function over an interval
c) The slope of the tangent line at a specific point
d) Both a and c

Solution: d) Both a and c

What is the equation of a tangent line at a specific point?
a) $y=m x+b$
b) $y=f(x)+b$
c) $y-y 1=m(x-x 1)$
d) None of the above

Solution: c) $y-y 1=m(x-x 1)$, where m is the slope of the tangent line and $(x 1, y 1)$ is the point of tangency.

What is the instantaneous rate of change of a function?

a) The slope of the tangent line at a specific point
b) The average rate of change of a function over an interval
c) The maximum rate of change of a function
d) None of the above

Solution: a) The slope of the tangent line at a specific point.

What is the relationship between the slope of the tangent line and the slope of the curve at a specific point?
a) The slope of the tangent line is greater than the slope of the curve
b) The slope of the tangent line is less than the slope of the curve
c) The slope of the tangent line is equal to the slope of the curve
d) There is no relationship between the two slopes

Solution: c) The slope of the tangent line is equal to the slope of the curve at a specific point.

What is the average rate of change of a function over an interval?

a) The difference in the function values at the endpoints of the interval
b) The difference in the independent variable values at the endpoints of the interval
c) The difference in the function values divided by the difference in the independent variable values
d) None of the above

Solution: c) The difference in the function values divided by the difference in the independent variable values.

What is the derivative of a constant function?

a) 0
b) 1
c) The constant itself
d) None of the above

Solution: a) 0 , as the slope of a constant function is always 0 .

What is the relationship between the derivative of a function and the slope of the tangent line?
a) The derivative of a function is the slope of the tangent line
b) The slope of the tangent line is the integral of the function
c) The derivative of a function is the average rate of change over an interval
d) None of the above

Solution: a) The derivative of a function is the slope of the tangent line at a specific point.

What is the relationship between the derivative of a function and the rate of change of the function?
a) The derivative of a function is the average rate of change over an interval
b) The derivative of a function is the instantaneous rate of change at a specific point
c) The derivative of a function is not related to the rate of change of the function
d) None of the above

Solution: b) The derivative of a function is the instantaneous rate of change at a specific point.

What is the derivative of $f(x)=x^{\wedge} \mathbf{2}$?
a) $f^{\prime}(x)=2 x$
b) $f^{\prime}(x)=x^{\wedge} 2$
c) $f^{\prime}(x)=1 / x$
d) None of the above

Solution: a) $f^{\prime}(x)=2 x$, as the derivative of $x^{\wedge} 2$ is $2 x$.

Lec 15 - The Derivative

What is the derivative of $f(x)=x^{\wedge} 2$ at $x=3$?
a) 3
b) 6
c) 9
d) 12

Answer: b) 6 (Using the power rule, $f^{\prime}(x)=2 x$, so $f^{\prime}(3)=2(3)=6$)

What is the derivative of $f(x)=\cos (x)$ at $x=p i / 4$?
a) -1
b) $-\sin (\mathrm{p} / 4)$
c) $\cos (\mathrm{p} / 4)$
d) $-\cos (\mathrm{p} / 4)$

Answer: d$)-\cos (\mathrm{pi} / 4)\left(\right.$ Using the chain rule, $\mathrm{f}^{\prime}(\mathrm{x})=-\sin (\mathrm{x})$, so $\left.\mathrm{f}^{\prime}(\mathrm{pi} / 4)=-\sin (\mathrm{pi} / 4)=-\cos (\mathrm{pi} / 4)\right)$

What is the derivative of $f(x)=e^{\wedge} x$ at $x=0$?
a) 0
b) 1
c) e
d) $\mathrm{e}^{\wedge}-1$

Answer: b) 1 (Using the power rule, $f^{\prime}(x)=e^{\wedge} x$, so $\left.f^{\prime}(0)=e^{\wedge} 0=1\right)$

What is the derivative of $f(x)=\ln (x)$ at $x=1$?
a) 0
b) 1
c) -1
d) undefined

Answer: b) 1 (Using the derivative of $\ln (x), f^{\prime}(x)=1 / x$, so $f^{\prime}(1)=1 / 1=1$)

What is the derivative of $f(x)=5 x^{\wedge} 4-3 x^{\wedge} 2+2 x-1 ?$
a) $20 x^{\wedge} 3-6 x+2$
b) $20 x^{\wedge} 3-6 x^{\wedge} 2+2$
c) $20 x^{\wedge} 3-6 x+1$
d) $20 x^{\wedge} 4-6 x^{\wedge} 2+2$

Answer: a) $20 x^{\wedge} 3-6 x+2$ (Using the power rule, $f^{\prime}(x)=20 x^{\wedge} 3-6 x^{\wedge} 2+2$)

What is the derivative of $f(x)=\operatorname{sqrt}(x)$ at $x=4$?
a) $1 / 8$
b) $1 / 4$
c) $1 / 2$
d) 2

Answer: b) $1 / 4$ (Using the derivative of $\operatorname{sqrt}(x), f^{\prime}(x)=1 /(2 \operatorname{sqrt}(x))$, so $\left.f^{\prime}(4)=1 /(2 \operatorname{sqrt}(4))=1 / 4\right)$

What is the derivative of $f(x)=\sin (x)+\cos (x)$ at $x=p i / 3$?
a) $-1 / 2$
b) 0
c) $1 / 2$
d) $\operatorname{sqrt}(3) / 2$

Answer: c) $1 / 2$ (Using the sum rule and the derivative of $\sin (x)$ and $\cos (x), \mathrm{f}^{\prime}(\mathrm{x})=\cos (\mathrm{x})-\sin (\mathrm{x})$, so $\mathrm{f}^{\prime}(\mathrm{pi} / 3)=$ $\cos (\mathrm{pi} / 3)-\sin (\mathrm{pi} / 3)=1 / 2-\operatorname{sqrt}(3) / 2=1 / 2-1 / 2 \operatorname{sqrt}(3)=1 / 2(1-1 / \mathrm{sqrt}(3))=1 / 2(1-\operatorname{sqrt}(3) / 3)=1 / 2-\operatorname{sqrt}(3) / 6$ $=1 / 2-0.289=0.211$)

What is the derivative of $f(x)=1 / x$ at $x=2$?
a) $-1 / 4$
b

Lec 16 - Techniques of Differentiation

What is the derivative of $f(x)=x^{\wedge} 3+4 x^{\wedge} 2-5 x-2$?
a) $f^{\prime}(x)=3 x^{\wedge} 2+8 x-5$
b) $f^{\prime}(x)=3 x^{\wedge} 2+8 x+5$
c) $f^{\prime}(x)=3 x^{\wedge} 3+8 x^{\wedge} 2-5 x-2$
d) $f^{\prime}(x)=3 x^{\wedge} 2+4 x-5$

Solution: The derivative of $f(x)$ is $f^{\prime}(x)=3 x^{\wedge} 2+8 x-5$. Therefore, the correct answer is an option (a).

What is the derivative of $f(x)=\sin (x) \cos (x)$?
a) $f^{\prime}(x)=\cos (x) \sin (x)$
b) $f^{\prime}(x)=\cos ^{\wedge} 2(x)-\sin ^{\wedge} 2(x)$
c) $f^{\prime}(x)=-\sin (x) \cos (x)$
d) $f^{\prime}(x)=2 \cos (x) \sin (x)$

Solution: Using the product rule, we get $\mathrm{f}^{\prime}(\mathrm{x})=\cos (\mathrm{x}) \cos (\mathrm{x})-\sin (\mathrm{x}) \sin (\mathrm{x})=\cos ^{\wedge} 2(\mathrm{x})-\sin ^{\wedge} 2(\mathrm{x})$. Therefore, the correct answer is option (b).

What is the derivative of $f(x)=3 x^{\wedge} 4-2 x^{\wedge} 3+5 x^{\wedge} 2-4 x+1$?
a) $f^{\prime}(x)=12 x^{\wedge} 3-6 x^{\wedge} 2+10 x-4$
b) $f^{\prime}(x)=12 x^{\wedge} 3-6 x^{\wedge} 2+5 x-4$
c) $f^{\prime}(x)=3 x^{\wedge} 3-2 x^{\wedge} 2+5 x-4$
d) $f^{\prime}(x)=3 x^{\wedge} 3-2 x^{\wedge} 2+10 x-4$

Solution: The derivative of $f(x)$ is $f^{\prime}(x)=12 x^{\wedge} 3-6 x^{\wedge} 2+10 x-4$. Therefore, the correct answer is option (a).

What is the derivative of $f(x)=e^{\wedge} x \cos (x)$?
a) $f^{\prime}(x)=e^{\wedge} x \sin (x)$
b) $f^{\prime}(x)=e^{\wedge} x(\cos (x)+\sin (x))$
c) $f^{\prime}(x)=e^{\wedge} x(\cos (x)-\sin (x))$
d) $f^{\prime}(x)=e^{\wedge} x(\cos (x)-\cos (x))$

Solution: Using the product rule, we get $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{e}^{\wedge} \mathrm{x} \cos (\mathrm{x})-\mathrm{e}^{\wedge} \mathrm{x} \sin (\mathrm{x})=\mathrm{e}^{\wedge} \mathrm{x}(\cos (\mathrm{x})-\sin (\mathrm{x}))$. Therefore, the correct answer is option (c).

What is the derivative of $f(x)=\ln (5 x)$?
a) $f^{\prime}(x)=1 /(5 x)$
b) $\mathrm{f}^{\prime}(\mathrm{x})=5 \ln (\mathrm{x})$
c) $\mathrm{f}^{\prime}(\mathrm{x})=5 /(\ln (\mathrm{x}))$
d) $f^{\prime}(x)=1 / x$

Solution: Using the chain rule, we get $\mathrm{f}^{\prime}(\mathrm{x})=1 /(5 \mathrm{x})$. Therefore, the correct answer is option (a).

What is the derivative of $f(x)=x^{\wedge} 2 \ln (x)$?
a) $f^{\prime}(x)=2 x \ln (x)+x$
b) $f^{\prime}(x)=x \ln (x)$
c) $f^{\prime}(x)=2 x \ln (x)+2 x$
d) $f^{\prime}(x)=2 x \ln (x)+x^{\wedge} 2$

Solution: Using (a)

Lec 17 - Derivatives of Trigonometric Function

What is the derivative of the sine function?
a. cosine function
b. tangent function
c. cosecant function
d. secant function

Answer: a. cosine function

What is the derivative of the cosine function?

a. sine function
b. tangent function
c. cosecant function
d. negative sine function

Answer: d. negative sine function

What is the derivative of the tangent function?
a. cosine function
b. cosecant function
c. square of the secant function
d. negative square of the cosecant function

Answer: c. square of the secant function

What is the derivative of the cotangent function?
a. sine function
b. cosine function
c. negative square of the cosecant function
d. negative square of the secant function

Answer: c . negative square of the cosecant function

What is the derivative of the secant function?

a. cosecant function
b. tangent function
c. product of the secant and tangent functions
d. negative product of the secant and tangent functions

Answer: c. product of the secant and tangent functions

What is the derivative of the cosecant function?
a. secant function
b. cotangent function
c. negative product of the cosecant and cotangent functions
d. product of the cosecant and cotangent functions

Answer: c. negative product of the cosecant and cotangent functions

What is the derivative of $\sin (x)+\cos (x)$?
a. $\cos (x)-\sin (x)$
b. $\sin (x)+\cos (x)$
c. $\sin (x)-\cos (x)$
d. $\cos (x)+\sin (x)$

Answer: $\mathrm{a} \cdot \cos (\mathrm{x})-\sin (\mathrm{x})$

What is the derivative of $\tan (x) * \sec (x)$?
a. $\sec ^{\wedge} 2(x)$
b. $\sec (x) * \tan (x)$
c. $\sec (x)+\tan (x)$
d. $\tan ^{\wedge} 2(x)$

Answer: b. $\sec (\mathrm{x}) * \tan (\mathrm{x})$

What is the derivative of $\cos (2 x)$?
a. $-2 \sin (2 x)$
b. $-\sin (2 x)$
c. $2 \sin (2 \mathrm{x})$
d. $-2 \cos (2 x)$

Answer: d. $-2 \sin (2 \mathrm{x})$

What is the derivative of $\arcsin (x)$?
a. $1 / \operatorname{sqrt}\left(1-x^{\wedge} 2\right)$
b. $-1 / \operatorname{sqrt}\left(1-x^{\wedge} 2\right)$
c. $1 /\left(1-x^{\wedge} 2\right)$
d. $-1 /\left(1-x^{\wedge} 2\right)$

Answer: a. 1/sqrt(1-x^2)

Lec 18 - The chain Rule

What is the chain rule used for in calculus?
A) Integration
B) Derivatives
C) Limits
D) Sequences

Solution: B

Which of the following functions cannot be differentiated using the chain rule?
A) $f(x)=\sin \left(x^{\wedge} 2\right)$
B) $f(x)=e^{\wedge} x+\ln (x)$
C) $f(x)=\cos (3 x)$
D) $f(x)=x^{\wedge} 2+x+1$

Solution: D

What is the derivative of $f(x)=\sin (2 x)$ using the chain rule?
A) $2 \cos (2 x)$
B) $2 \sin (2 x)$
C) $4 \cos (2 x)$
D) $4 \sin (2 x)$

Solution: B

What is the derivative of $f(x)=e^{\wedge}(3 x+2)$ using the chain rule?
A) $3 e^{\wedge}(3 x+2)$
B) $\mathrm{e}^{\wedge}(3 \mathrm{x}+2)$
C) $3 e^{\wedge}(3 x)$
D) $2 e^{\wedge}(3 x+2)$

Solution: A

What is the chain rule formula?
A) $f^{\prime}(x)=\lim (h->0)(f(x+h)-f(x)) / h$
B) $f(x)=? g^{\prime}(x) d x$
C) $(f(g(x)))^{\prime}=f^{\prime}(x) g^{\prime}(x)$
D) $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$

Solution: D

What is an example of a composite function?
A) $f(x)=x^{\wedge} 2$
B) $f(x)=3 x+4$
C) $f(x)=\sin (x)$
D) $f(x)=\sin \left(x^{\wedge} 2\right)$

Solution: D

Which of the following is the correct order for applying the chain rule?
A) Differentiate the inner function, then the outer function
B) Differentiate the outer function, then the inner function
C) Multiply the inner and outer functions, then differentiate
D) There is no specific order

Solution: B

What is the derivative of $f(x)=\ln (\cos (x))$ using the chain rule?
A) $-\tan (x)$
B) $-\cot (x)$
C) $-\sec (x)$
D) $-\csc (x)$

Solution: $-\tan (\mathrm{x})$

Can the chain rule be applied to a function composed of more than two functions?
A) Yes
B) No

Solution: A

Which of the following is a way to remember the chain rule?
A) Outside inside
B) Inside outside
C) Middle first
D) There is no way to remember it

Solution: A

Lec 19 - Implicit Differentiation

What is the formula for finding the derivative of an implicit function?
A. $d y / d x=f^{\prime}(x)$
B. $d x / d y=f^{\prime}(y)$
C. $d y / d x=-f^{\prime}(x) / f^{\prime}(y)$
D. $d x / d y=-f^{\prime}(y) / f^{\prime}(x)$

Answer: C

What is the first step in implicit differentiation?
A. Solve for x
B. Solve for y
C. Differentiate both sides with respect to x
D. Differentiate both sides with respect to y

Answer: C

What is the derivative of $y^{\wedge} \mathbf{2}$ with respect to x using implicit differentiation?
A. 2 y
B. $2 x y$
C. 2 yx
D. 0

Answer: C

What is the derivative of $\mathbf{x}^{\wedge} \mathbf{2}+y^{\wedge} \mathbf{2}=\mathbf{2 5}$ with respect to \mathbf{x} using implicit differentiation?
A. $d y / d x=-x / y$
B. $d y / d x=-y / x$
C. $d y / d x=x / y$
D. $d y / d x=y / x$

Answer: A

What is the second derivative of $y^{\wedge} 2=x^{\wedge} 3$ using implicit differentiation?
A. $d^{\wedge} 2 y / d x^{\wedge} 2=-2 x / y$
B. $d^{\wedge} 2 y / d x^{\wedge} 2=-y / 2 x$
C. $\mathrm{d}^{\wedge} 2 \mathrm{y} / \mathrm{dx}^{\wedge} \wedge=2 \mathrm{x} / \mathrm{y}$
D. $d^{\wedge} 2 y / d x^{\wedge} 2=y / 2 x$

Answer: B

What is the derivative of $\sin \left(x^{\wedge} 2+y^{\wedge} 2\right)$ using implicit differentiation?
A. $\cos \left(x^{\wedge} 2+y^{\wedge} 2\right)$
B. $2 x \cos \left(x^{\wedge} 2+y^{\wedge} 2\right)$
C. $2 \mathrm{y} \cos \left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right)$
D. $2(\mathrm{x}+\mathrm{y}) \cos \left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right)$

Answer: D

What is the derivative of $y^{\wedge}(1 / 2)$ using implicit differentiation?
A. $(1 / 2) y^{\wedge}(-1 / 2)$
B. $(1 / 2) y^{\wedge}(1 / 2)$
C. $(1 / 2) y^{\wedge}(3 / 2)$
D. $(1 / 2) y^{\wedge}(2)$

Answer: A

What is the derivative of $x^{\wedge} 2 y^{\wedge} 3+x y=6$ using implicit differentiation?
A. $d y / d x=-2 x / 3 y$
B. $d y / d x=-3 y / 2 x$
C. $d y / d x=-2 y / 3 x$
D. $d y / d x=-3 x / 2 y$

Answer: C

What is the equation of the tangent line to $x^{\wedge} 2+y^{\wedge} 2=16$ at the point (3 , -sqrt(7)) using implicit differentiation?
A. $\mathrm{y}=2 \mathrm{x}-\operatorname{sqrt}(7)$
B. $y=2 x+\operatorname{sqrt}(7)$
C. $y=-2 x-\operatorname{sqrt}(7)$
D. $y=-2 x+\operatorname{sqrt}(7)$

Answer: D

What is the derivative of $\ln (\mathbf{x y})$ using implicit differentiation?
A. $(1 / x)+(1 / y)$
B. $\left(y / x^{\wedge} 2\right)+\left(x / y^{\wedge} 2\right)$
C. $(1 / y)+\left(x / y^{\wedge} 2\right)$
D. $(1 / x)+\left(y / x^{\wedge} 2\right)$

Answer: C

Lec 20 - Derivative of Logarithmic and Exponential Functions

What is the derivative of $\ln (x)$?
a) x
b) $1 / x$
c) $\ln (x)$
d) 0

Solution: b) $1 / x$

What is the derivative of $\mathrm{e}^{\wedge} \mathrm{x}$?
a) x
b) $e^{\wedge} x$
c) $\ln (x)$
d) 0

Solution: b) $e^{\wedge} x$

What is the derivative of $\ln (u)$, where u is a function of x ?
a) $1 / \mathrm{u}$
b) $\mathrm{u} / \ln (\mathrm{u})$
c) $u^{\prime} / \ln (u)$
d) $\ln (u) / u^{\prime}$

Solution: c) u'/u

What is the derivative of $\mathrm{e}^{\wedge} \mathbf{u}$, where u is a function of x ?
a) $e^{\wedge} u$
b) $u^{\prime} e^{\wedge} u$
c) $e^{\wedge}(u / x)$
d) $e^{\wedge}\left(u^{\wedge} 2\right)$

Solution: b) u'e^u

What is the derivative of $\ln (\mathbf{a x})$, where a is a constant?
a) $1 / x \ln (a)$
b) a / x
c) $x \ln (a)$
d) 0

Solution: a) $1 / x \ln (a)$

What is the derivative of $\mathrm{e}^{\wedge}(\mathbf{a x})$, where a is a constant?
a) $\mathrm{ae}^{\wedge} \mathrm{x}$
b) $e^{\wedge}(a x)$
c) $x^{\wedge} a$
d) $a^{\wedge} x$

Solution: a) $\mathrm{ae}^{\wedge}(\mathrm{ax})$

What is the derivative of $\ln \left(x^{\wedge} \mathbf{n}\right)$, where \mathbf{n} is a constant?
a) $\ln (x)$
b) n / x
c) x / n
d) 0

Solution: b) n / x

What is the derivative of $\mathrm{e}^{\wedge}(\mathrm{nx})$, where n is a constant?
a) $e^{\wedge}(n x)$
b) $n^{\wedge} x$
c) $n e^{\wedge}(n x)$
d) $e^{\wedge}\left(n^{\wedge} x\right)$

Solution: c) $n e^{\wedge}(\mathrm{nx})$

What is the derivative of $\ln \left(\mathrm{e}^{\wedge} \mathrm{x}\right)$?
a) x
b) 1
c) $e^{\wedge} x$
d) $\ln (x)$

Solution: b) 1

What is the derivative of $\mathrm{e}^{\wedge}(\ln (\mathrm{x}))$?
a) x
b) $e^{\wedge} x$
c) $\ln (x)$
d) 1

Solution: a) x

Lec 21 - Applications of Differentiation

What does the first derivative of a function represent?
a) The slope of the tangent line
b) The curvature of the function
c) The area under the curve
d) None of the above

Answer: a) The slope of the tangent line

What is the fundamental theorem of calculus?

a) Differentiation and integration are inverse operations.
b) The derivative of an integral function is equal to the original function.
c) The area under a curve can be found by integrating the function.
d) All of the above

Answer: d) All of the above

How is differentiation used in optimization problems?
a) To find the maximum or minimum value of a function
b) To find the area under a curve
c) To find the derivative of a function
d) None of the above

Answer: a) To find the maximum or minimum value of a function

What is the second derivative of a function?

a) The slope of the tangent line
b) The curvature of the function
c) The area under the curve
d) None of the above

Answer: b) The curvature of the function

What is the method of Lagrange multipliers used for?

a) To solve optimization problems with constraints
b) To find the derivative of a function
c) To find the area under a curve
d) None of the above

Answer: a) To solve optimization problems with constraints

How is differentiation used in physics?

a) To find the area under a curve
b) To find the maximum or minimum value of a function
c) To study motion and velocity
d) None of the above

Answer: c) To study motion and velocity

What is the complex derivative?

a) The derivative of a complex function
b) The derivative of a real function
c) The area under a complex curve
d) None of the above

Answer: a) The derivative of a complex function

What is the indefinite integral?

a) The derivative of an integral function
b) The integral of a derivative function
c) The area under a curve
d) None of the above

Answer: b) The integral of a derivative function

How is differentiation used in economics?
a) To study supply and demand curves
b) To maximize profits
c) To study the rate of change of a variable
d) All of the above

Answer: d) All of the above

What is the derivative of a constant?
a) Zero
b) One
c) The constant itself
d) None of the above

Answer: a) Zero

Lec 22 - Relative Extrema

What is a relative extremum?

A. A point where the function is undefined.
B. A point where the function has a vertical tangent.
C. A local maximum or minimum value of a function within a given interval.
D. A point where the function has a horizontal tangent.

Answer: C. A local maximum or minimum value of a function within a given interval.

How do you find relative extrema?

A. Take the limit of the function as x approaches infinity.
B. Take the limit of the function as x approaches negative infinity.
C. Take the derivative of the function and find the critical points.
D. Take the integral of the function.

Answer: C. Take the derivative of the function and find the critical points.

What is a critical point in calculus?

A. A point where the function is undefined.
B. A point where the function has a vertical tangent.
C. A point where the derivative of the function is zero or undefined.
D. A point where the function has a horizontal tangent.

Answer: C. A point where the derivative of the function is zero or undefined.

What is the second derivative test?

A. A method used to determine whether a critical point corresponds to a relative maximum, relative minimum, or neither.
B. A method used to find the derivative of the function.
C. A method used to find the antiderivative of the function.
D. A method used to find the limit of the function as x approaches infinity.

Answer: A. A method used to determine whether a critical point corresponds to a relative maximum, relative minimum, or neither.

What is a relative maximum?

A. The highest point of a function within a given interval.
B. The lowest point of a function within a given interval.
C. A point where the function is undefined.
D. A point where the function has a vertical tangent.

Answer: A. The highest point of a function within a given interval.

What is a relative minimum?

A. The highest point of a function within a given interval.
B. The lowest point of a function within a given interval.
C. A point where the function is undefined.
D. A point where the function has a vertical tangent.

Answer: B. The lowest point of a function within a given interval.

Can a function have multiple relative extrema?

A. Yes, a function can have multiple relative extrema.
B. No, a function can only have one relative extremum.
C. It depends on the type of function.
D. It depends on the interval.

Answer: A. Yes, a function can have multiple relative extrema.

What is the second derivative of a function?

A. The derivative of its antiderivative.
B. The integral of its derivative.
C. The derivative of its first derivative.
D. The integral of its second derivative.

Answer: C. The derivative of its first derivative.

What is a point of inflection?

A. A point where the function is undefined.
B. A point where the function has a vertical tangent.
C. A point where the function changes concavity.
D. A point where the function has a horizontal tangent.

Answer: C. A point where the function changes concavity.

What is the critical number of a function?

A. The highest point of the function.
B. The lowest point of the function.
C. The point where the function is undefined.
D. The value of x that makes the derivative zero or undefined.

Answer: D . The value of x that makes the derivative zero or undefined.

