MTH101

Calculus And Analytical Geometry

Important subjective

Lec 1 - Calculus And Analytical Geometry

1. What is a coordinate plane? Answer: A coordinate plane is a two-dimensional plane with two perpendicular number lines, the x -axis and the y -axis, which are used to assign coordinates to points on the plane.
2. What is the origin in the Cartesian coordinate system? Answer: The origin is the point where the x axis and the y-axis intersect and is assigned the coordinates $(0,0)$.
3. How are coordinates assigned to points on the plane? Answer: Coordinates are assigned to points on the plane by measuring the distance from the origin along each axis.
4. What is a graph in Calculus and Analytical Geometry? Answer: A graph is a visual representation of the relationship between two variables, typically represented by the x and y-axes.
5. How is a graph created? Answer: A graph is created by plotting points that correspond to specific values of the independent and dependent variables and then connecting them by a line or curve.
6. What information can the shape of a graph provide? Answer: The shape of a graph can provide valuable information about the properties of the function being graphed.
7. What is a line in Calculus and Analytical Geometry? Answer: A line is a straight path that extends infinitely in both directions.
8. How can a line be described using its equation in standard form? Answer: The equation of a line in standard form is $\mathrm{ax}+\mathrm{by}=\mathrm{c}$, where a, b, and c are constants that define the line's properties.
9. How can a line be described using its equation in slope-intercept form? Answer: The equation of a line in slope-intercept form is $y=m x+b$, where m is the slope of the line, and b is the y-intercept.
10. What is the slope of a line? Answer: The slope of a line is a measure of how steep it is and is defined as the change in the y-coordinate divided by the change in the x-coordinate.

Lec 2 - Absolute Value

1. What is the Absolute Value of $\mathbf{- 1 0}$?

Answer: The Absolute Value of -10 is 10.
2. Define the Absolute Value function.

Answer: The Absolute Value function is a function that returns the magnitude or distance of a number from zero on the number line, regardless of its sign. It is denoted by $f(x)=|x|$.
3. What is the graph of the Absolute Value function?

Answer: The graph of the Absolute Value function is a V-shaped curve with its vertex at the origin.
4. Is the Absolute Value function continuous for all real numbers?

Answer: Yes, the Absolute Value function is continuous for all real numbers.
5. What is the derivative of the Absolute Value function?

Answer: The derivative of the Absolute Value function is a step function, which changes its value abruptly at $x=0$. The derivative of the Absolute Value function is given by $f^{\prime}(x)=-1$, for $x<$ 0 and $f^{\prime}(x)=1$, for $x>0$.
6. What is the limit of the function $f(x)=|x|$ as x approaches 0 ?

Answer: The limit of the function $f(x)$ as x approaches 0 from the left is -0 , and the limit of the function as x approaches 0 from the right is 0 . Hence, the limit of the function $f(x)$ as x approaches 0 does not exist.
7. Is the Absolute Value function differentiable at $\mathbf{x}=\mathbf{0}$?

Answer: No, the Absolute Value function is not differentiable at $x=0$.
8. What is the distance between points $(3,4)$ and $(-2,1)$?

Answer: The distance between the points $(3,4)$ and $(-2,1)$ is given by $|3-(-2)|+|4-1|=5+3$ $=8$.
9. How can we evaluate the integral ? $[0,2]|x-1| d x$?

Answer: We can split the integral into two parts ? $[0,1](1-x) d x$ and ? $[1,2](x-1) d x$, which gives the value of the integral as 1 .
10. What is the value of $|5-7|+|10-7|$?

Answer: The value of $|5-7|+|10-7|$ is $2+3=5$.

Lec 3 - Coordinate Planes and Graphs

1. What is a coordinate plane?

Answer: A coordinate plane is a two-dimensional plane that is divided into four quadrants, labeled I, II, III, and IV. The plane is defined by two perpendicular axes, the x-axis and the y axis, which intersect at the origin, denoted as $(0,0)$.
2. What is the x-axis?

Answer: The x-axis is the horizontal axis on a coordinate plane.
3. What is the y-axis?

Answer: The y-axis is the vertical axis on a coordinate plane.
4. What is the origin?

Answer: The origin is the point $(0,0)$ on a coordinate plane where the x-axis and the y-axis intersect.
5. What is the slope of a line?

Answer: The slope of a line is the ratio of the change in the y-coordinate to the change in the x coordinate.
6. What is the y-intercept?

Answer: The y-intercept is the point where a line intersects the y-axis.
7. What is a linear equation?

Answer: A linear equation is an equation that can be written in the form $y=m x+b$, where m is the slope of the line and b is the y-intercept.
8. What is a quadratic equation?

Answer: A quadratic equation is an equation that can be written in the form $y=a x^{\wedge} 2+b x+c$, where a, b, and c are constants.
9. What is a parabola?

Answer: A parabola is a U-shaped curve that is the graph of a quadratic equation.
10. How do you find the vertex of a parabola?

Answer: The vertex of a parabola can be found by using the formula $x=-b / 2 a$ to find the $x-$ coordinate, and then plugging that value into the quadratic equation to find the corresponding y coordinate.

Lec 4 - Lines

1. What is a line in mathematics?

A line is a basic geometric object that is defined by two points.
2. What is the slope of a line?

The slope of a line is a measure of how steep the line is. It is defined as the change in the y coordinate divided by the change in the x-coordinate between two points on the line.
3. Can the slope of a line be negative?

Yes, the slope of a line can be negative. A line with a negative slope falls as it moves to the right.
4. What is the y-intercept of a line?

The y-intercept is the point at which the line crosses the y-axis. It is defined as the value of y when x is equal to zero.
5. What is the slope-intercept form of the equation of a line?

The slope-intercept form of the equation of a line is $y=m x+b$, where m is the slope of the line and b is the y -intercept.
6. How can you determine the slope of a line from its equation?

The slope of a line can be determined from its equation by identifying the coefficient of x in the equation.
7. What is the tangent line to a function?

The tangent line is a line that touches the graph of a function at a given point and has the same slope as the function at that point.
8. How can the equation of a line be used to determine the intersection points of two lines? The equation of a line can be used to determine the intersection points of two lines by setting the equations of the two lines equal to each other and solving for the x and y values.
9. Can a line intersect a circle at more than one point? Yes, a line can intersect a circle at more than one point.
10. How is the derivative of a function related to the slope of the function?

The derivative of a function is related to the slope of the function because it is defined as the rate at which the function changes with respect to its input. The derivative of a linear function is simply its slope.

Lec 5 - Distance; Circles, Quadratic Equations

1. What is the Pythagorean theorem, and how is it used to calculate distance?

Answer: The Pythagorean theorem states that the square of the hypotenuse of a right-angled triangle is equal to the sum of the squares of the other two sides. It is used to calculate the distance between two points in a Cartesian plane.
2. How is the equation of a circle derived?

Answer: The equation of a circle is derived using the distance formula, where the distance between any point on the circle and the center is equal to the radius.
3. What is the quadratic formula, and how is it used to solve quadratic equations?

Answer: The quadratic formula is used to solve quadratic equations of form $a x^{\wedge} 2+b x+c=0$. It is given as $x=\left(-b+/-\operatorname{sqrt}\left(b^{\wedge} 2-4 a c\right)\right) / 2 a$.
4. What are the three cases for the solutions of a quadratic equation, based on the discriminant?
Answer: If the discriminant ($b^{\wedge} 2-4 a c$) is positive, the quadratic equation has two real solutions. If the discriminant is zero, the quadratic equation has one real solution. If the discriminant is negative, the quadratic equation has two complex solutions.
5. How can the equation of a circle be used to determine the radius of a circular object? Answer: If the equation of the circle is given in the form $(x-h)^{\wedge} 2+(y-k)^{\wedge} 2=r^{\wedge} 2$, then the radius of the circle is equal to r.
6. What is the distance between points $(2,3)$ and $(5,7)$?

Answer: Using the distance formula, the distance between the two points is $\mathrm{d}=\operatorname{sqrt}\left((5-2)^{\wedge} 2+\right.$ $\left.(7-3)^{\wedge} 2\right)=\operatorname{sqrt}(9+16)=\operatorname{sqrt}(25)=5$ units.
7. What is the center and radius of the circle with equation $(x-2)^{\wedge} \mathbf{2}+(y+3)^{\wedge} \mathbf{2}=\mathbf{2 5}$?

Answer: The center of the circle is $(2,-3)$, and the radius is 5 units.
8. What is the discriminant of the quadratic equation $3 x^{\wedge} 2-4 x+1=0$?

Answer: The discriminant is $b^{\wedge} 2-4 a c=(-4)^{\wedge} 2-4(3)(1)=4$, which is positive. Therefore, the equation has two real solutions.
9. How can the equation of a circle be used to model the trajectory of a projectile?

Answer: The equation of a circle can be used to model the trajectory of a projectile if the projectile follows a parabolic path. In this case, the equation of the circle can be modified to include additional variables, such as time and acceleration.
10. How can quadratic equations be used to solve problems related to motion, such as calculating the speed and acceleration of an object?
Answer: Quadratic equations can be used to model the motion of an object using equations of motion. These equations can be solved to determine the speed, acceleration, and other parameters of the object's motion.

Lec 6 - Functions and Limits

1. What is a function in calculus?

Answer: A function in calculus is a mathematical object that relates an input to an output.
2. What is the domain of a function?

Answer: The domain of a function is the set of all possible input values for which the function is defined.
3. What is the range of a function?

Answer: The range of a function is the set of all possible output values that the function can produce.
4. What is a limit in calculus?

Answer: A limit in calculus is the value that a function approaches as its input approaches a certain value.
5. How is the concept of a limit formalized using the epsilon-delta definition?

Answer: The concept of a limit is formalized using the epsilon-delta definition, which states that for every positive number epsilon, there exists a positive number delta such that if $0<|\mathrm{x}-\mathrm{a}|<$ delta, then $|f(x)-L|<e p s i l o n$.
6. What is continuity in calculus?

Answer: Continuity is a fundamental property of many functions in calculus, which means that the limit of the function at a point exists and is equal to the value of the function at that point.
7. What is differentiability in calculus?

Answer: Differentiability is a property of some functions in calculus, which means that the limit of the difference quotient of the function at a point exists.
8. What is the derivative of a function?

Answer: The derivative of a function is defined as the limit of the difference quotient of the function as the difference in input approaches zero.
9. What is the integral of a function?

Answer: The integral of a function is defined as the limit of a sum of areas of rectangles as the width of the rectangles approaches zero.
10. What are infinite sequences and series in calculus?

Answer: Infinite sequences and series are mathematical concepts in calculus that involve an infinite list of numbers or the sum of an infinite list of numbers. The behavior of infinite sequences and series can be studied using the concept of limits.

Lec 7 - Operations on Functions

1. What is the domain of a function?

Answer: The domain of a function is the set of all input values (or independent variables) for which the function is defined.
2. What is the range of a function?

Answer: The range of a function is the set of all output values (or dependent variables) that the function can produce.
3. What is the difference between a composite function and a simple function?

Answer: A simple function is a function that consists of a single equation, while a composite function is a function that is formed by combining two or more functions.
4. What is the inverse of a function?

Answer: The inverse of a function is a new function that reverses the operation of the original function.
5. What is the difference between a one-to-one function and a many-to-one function? Answer: A one-to-one function is a function that maps each element of the domain to a unique element of the range, while a many-to-one function is a function that maps multiple elements of the domain to a single element of the range.
6. What is the composition of functions?

Answer: The composition of functions is the process of combining two or more functions to create a new function.
7. What is the difference between a domain and a codomain?

Answer: The domain of a function is the set of all input values, while the codomain is the set of all possible output values.
8. What is a linear function?

Answer: A linear function is a function that can be represented by a straight line on a graph.
9. What is a polynomial function?

Answer: A polynomial function is a function that can be represented by a polynomial equation, which is an equation that involves only addition, subtraction, and multiplication of variables
raised to whole number powers.
10. What is the difference between an even function and an odd function?

Answer: An even function is a function that is symmetric about the y-axis, meaning that $f(x)=f(-$ x) for all values of x. An odd function is a function that is symmetric about the origin, meaning that $f(x)=-f(-x)$ for all values of x.

Lec 8 - Graphing Functions

1. What is the purpose of graphing functions in calculus and analytical geometry?

Answer: The purpose of graphing functions is to visualize the behavior of a function, such as its shape, intercepts, and key points, on a two-dimensional coordinate plane.
2. What are the components of a graph?

Answer: The x-axis represents the independent variable or input values, while the y-axis represents the dependent variable or output values. The origin $(0,0)$ is where the x and y-axes intersect.
3. How do we find the intercepts of a function?

Answer: To find the x-intercepts, we set the function equal to zero and solve for x. To find the y intercepts, we set x equal to zero and solve for y.
4. What is the behavior of even-degree functions with a positive leading coefficient as \mathbf{x} approaches infinity or negative infinity?
Answer: Even-degree functions with a positive leading coefficient will have a minimum at their vertex and will approach positive infinity as x approaches positive or negative infinity.
5. What is the behavior of even-degree functions with a negative leading coefficient as \mathbf{x} approaches infinity or negative infinity?
Answer: Even-degree functions with a negative leading coefficient will have a maximum at their vertex and will approach negative infinity as x approaches positive or negative infinity.
6. What is the behavior of odd-degree functions as x approaches infinity or negative infinity?
Answer: Odd-degree functions will approach positive infinity as x approaches positive infinity and negative infinity as x approaches negative infinity.
7. What is the difference between even and odd functions?

Answer: Even functions are symmetric about the y-axis, while odd functions are symmetric about the origin.
8. How do we find the critical points of a function?

Answer: The critical points of a function are the points where the derivative is equal to zero or does not exist.
9. How do we determine the location of local extrema?

Answer: We use the first derivative test to find the critical points and test the sign of the derivative on either side of the critical point.
10. How do we determine the location of inflection points?

Answer: We use the second derivative test to find the critical points of the second derivative and test the sign of the second derivative on either side of the critical point.

Lec 9 - Limits (Intuitive Introduction)

1. What is a limit in calculus?

A limit is a value that a function approaches as the input variable gets closer to a certain value.
2. What is the importance of limits in calculus?

Limits are important because they can be used to calculate the behavior of a function as it approaches certain points.
3. What is the limit of a function $f(x)$ as x approaches a ?

The limit of a function $f(x)$ as x approaches a is the value that $f(x)$ approaches as x gets arbitrarily close to a.
4. What is the formal definition of limits?

The formal definition of limits involves the concept of epsilon-delta. It states that the limit of a function exists if and only if for any ? > 0, there exists a ? > 0 such that $|f(x)-\mathrm{L}|<$? whenever 0 $<|x-a|<?$.
5. What is the concept of one-sided limits?

One-sided limits are used when the limit from the left or the right of a value is different.
6. What is the difference between a limit and a function value?

A function value is the value of the function at a specific point, while a limit is a value that the function approaches as the input variable gets arbitrarily close to a certain value.
7. What is the limit of a constant function?

The limit of a constant function is the same as the value of the constant.
8. What is the limit of a rational function as x approaches infinity?

The limit of a rational function as x approaches infinity depends on the degree of the numerator and denominator. If the degree of the numerator is less than the degree of the denominator, the limit is zero. If the degrees are equal, the limit is the ratio of the leading coefficients. If the degree of the numerator is greater than the degree of the denominator, the limit is either infinity or negative infinity depending on the signs of the leading coefficients.
9. What is the limit of a function that has a vertical asymptote?

The limit of a function that has a vertical asymptote does not exist at the point of the vertical
asymptote.
10. How can limits be used to calculate derivatives?

Limits are used to calculate derivatives by taking the limit of the difference quotient as the change in x approaches zero.

Lec 10 - Limits (Computational Techniques)

1. What is the direct substitution method for finding limits?

Answer: The direct substitution method involves substituting the value that the variable is approaching directly into the function and evaluating it.

2. When does direct substitution fail?

Answer: Direct substitution fails when the limit of a function results in an indeterminate form, such as $0 / 0$ or infinity/infinity.

3. What is the factorization method for finding limits?

Answer: The factorization method involves simplifying expressions by factoring out common factors and canceling them out.
4. How can conjugate pairs be used to simplify expressions and eliminate radicals in the denominator?

Answer: Conjugate pairs are expressions that are identical except for a change in the sign between terms. They can be used to simplify expressions and eliminate radicals in the denominator by multiplying the numerator and denominator by the conjugate of the numerator.

5. What is rationalizing?

Answer: Rationalizing is a technique used to eliminate radicals in the denominator by multiplying the numerator and denominator by a conjugate expression.

6. What is L'Hopital's Rule?

Answer: L'Hopital's Rule is a powerful technique used to find limits of indeterminate forms by taking the derivative of both the numerator and denominator of a function and evaluating the limit of the resulting quotient.

7. When can L'Hopital's Rule be applied?

Answer: L'Hopital's Rule can be applied when the limit of a function results in an indeterminate form, such as 0/0 or infinity/infinity.

8. What is the squeeze theorem?

Answer: The squeeze theorem states that if two functions $g(x)$ and $h(x)$ both approach the same limit as x approaches a, and there exists another function $f(x)$ that is squeezed between them, then $f(x)$ must also approach the same limit as x approaches a.

9. What is the limit of a constant function?

Answer: The limit of a constant function is equal to the constant value at all points.

Answer: The limit of a rational function depends on the degree of the numerator and denominator. If the degree of the numerator is less than the degree of the denominator, the limit approaches zero. If the degree of the numerator is greater than the degree of the denominator, the limit approaches infinity. If the degree of the numerator and denominator are equal, the limit approaches the ratio of the leading coefficients.

Lec 11 - Limits (Rigorous Approach)

1. What is the definition of a limit in calculus?

Answer: The limit of a function $f(x)$ as x approaches a is the value that $f(x)$ approaches as x gets closer and closer to a.
2. What is the difference between a one-sided limit and a two-sided limit?

Answer: A one-sided limit only considers the behavior of the function from one side of a point, while a two-sided limit considers the behavior of the function from both sides of the point.
3. What is an indeterminate form in calculus?

Answer: An indeterminate form is a mathematical expression that is not well-defined, such as $0 / 0$ or infinity/infinity.
4. What is L'Hopital's rule, and when is it used to evaluate limits?

Answer: L'Hopital's rule is a method for evaluating limits that involve taking the derivative of the numerator and denominator separately and then evaluating the limit again. It is used when we have an indeterminate form of the type $0 / 0$ or infinity/infinity.
5. What is the Squeeze theorem, and when is it used to evaluate limits?

Answer: The Squeeze theorem is a method for evaluating limits that involve bounding a function between two other functions, and if the limits of the two bounding functions are equal, then the limit of the bounded function is also equal to that limit.
6. What is the meaning of a limit that equals infinity?

Answer: If a limit equals infinity, it means that the function grows without bounds as x approaches the limiting value.
7. What is the meaning of a limit that equals negative infinity?

Answer: If a limit equals negative infinity, it means that the function decreases without bound as x approaches the limiting value.
8. What is the difference between a removable and non-removable discontinuity in a function?
Answer: A removable discontinuity is a point where the function is undefined, but it can be made continuous by defining the function at that point. A non-removable discontinuity is a point where the function cannot be made continuous.
9. What is the limit of a constant function?

Answer: The limit of a constant function is equal to the constant value at any point.
10. Can a function have a limit that does not exist?

Answer: Yes, a function can have a limit that does not exist if the function oscillates or jumps around the limiting value.

Lec 12 - Continuity

1. What is continuity?

Answer: Continuity is the property of a function such that as the input variable approaches a particular value, the output value of the function approaches a specific limit.
2. What is the importance of continuity in calculus?

Answer: Continuity is essential in calculus as it allows us to define the derivative and integral of a function.
3. How is continuity related to limits?

Answer: The concept of continuity is closely related to the concept of limits, as it allows us to calculate limits precisely and make predictions about the behavior of a function as it approaches a particular point.
4. How is continuity important in analytical geometry?

Answer: Continuity is important in analytical geometry as it allows us to describe the behavior of curves in space.
5. What is the derivative of a function?

Answer: The derivative of a function is defined as the limit of the difference quotient as the interval between two points approaches zero.
6. How is the concept of continuity related to the derivative of a function?

Answer: If a function is continuous at a point, then the derivative at that point exists and is defined as the slope of the tangent line to the curve at that point.
7. What is the integral of a function?

Answer: The integral of a function is defined as the area under the curve between two points.
8. How is the concept of continuity related to the integral of a function?

Answer: The concept of continuity allows us to make precise approximations of the area under the curve by reducing the width of the rectangles to zero.
9. What is the limit of a function?

Answer: The limit of a function is defined as the value that the function approaches as the input variable approaches a particular value.
10. How is continuity related to making predictions about the behavior of a function?

Answer: The concept of continuity allows us to make predictions about the behavior of a function as it approaches a particular point by calculating limits precisely.

Lec 13 - Limits and Continuity of Trigonometric Functions

What is the definition of the sine function?
Answer: The sine function is defined as the y-coordinate of a point on the unit circle in the coordinate plane.

Is the limit of the sine function as x approaches zero defined? Why or why not?
Answer: No, the limit of the sine function as x approaches zero is not defined because the function oscillates between -1 and 1 as x approaches zero.

What is the limit of the cosine function as x approaches zero?
Answer: The limit of the cosine function as x approaches zero is 1 .

What is the definition of continuity?

Answer: A function is said to be continuous at a point if the limit of the function at that point exists and is equal to the value of the function at that point.

Is the tangent function continuous at all points? Why or why not?
Answer: No, the tangent function is not continuous at certain points where it has vertical asymptotes.

What is the derivative of the sine function?
Answer: The derivative of the sine function is the cosine function.

What is the derivative of the cosine function?
Answer: The derivative of the cosine function is the negative sine function.

What is the derivative of the tangent function?

Answer: The derivative of the tangent function is the secant squared function.

How can the continuity of trigonometric functions be used to solve problems in calculus?
Answer: The continuity of trigonometric functions can be used to find critical points and solve optimization problems.

What is the maximum value of the function $f(x)=\sin (x)+\cos (x)$ on the interval [0, 2?]?
Answer: The maximum value of the function $\mathrm{f}(\mathrm{x})=\sin (\mathrm{x})+\cos (\mathrm{x})$ on the interval [0,2?] is 2 , which occurs at $\mathrm{x}=? / 4$ and $9 ? / 4$.

Lec 14 - Tangent Lines, Rates of Change

What is a tangent line and how is it used in calculus?
Answer: A tangent line is a straight line that touches a curve at a single point and is used to approximate the behavior of the curve near that point. In calculus, we use the tangent line to find the derivative of a function at a specific point.

What is the derivative of a function and how is it related to the tangent line?

Answer: The derivative of a function gives us the instantaneous rate of change of the function at a specific point, which is the slope of the tangent line. The tangent line is used to approximate the behavior of the curve near that point.

How do you find the equation of a tangent line at a specific point?

Answer: To find the equation of the tangent line at a specific point, we need to find the derivative of the function at that point, which gives us the slope of the tangent line. Then, we use the point-slope formula to find the equation of the tangent line.

What is the average rate of change of a function over an interval?

Answer: The average rate of change of a function over an interval is the amount by which the function changes with respect to its independent variable, divided by the length of the interval.

What is the instantaneous rate of change of a function at a specific point?

Answer: The instantaneous rate of change of a function at a specific point is the derivative of the function at that point, which gives us the slope of the tangent line at that point.

How are tangent lines and rates of change used in physics?

Answer: Tangent lines and rates of change are used in physics to find the velocity, acceleration, and other parameters of an object's motion.

How are tangent lines and rates of change used in economics?

Answer: Tangent lines and rates of change are used in economics to find the marginal rate of change of a function, which is the rate at which certain parameter changes with respect to another parameter.

What is the relationship between the slope of the tangent line and the slope of the curve at a specific point?

Answer: The slope of the tangent line to a curve at a specific point is equal to the slope of the curve at that point.

How can we use the tangent line to approximate the behavior of a curve near a specific point?
Answer: By finding the equation of the tangent line at a specific point, we can approximate the behavior of the curve near that point. The tangent line gives us a linear approximation of the curve at that point.

What are some real-world applications of tangent lines and rates of change?
Answer: Tangent lines and rates of change have many real-world applications, such as in physics, economics, engineering, and finance. They are used to model and analyze the behavior of various systems and processes.

Lec 15 - The Derivative

What is the definition of the derivative?

Answer: The derivative of a function is a measure of how much the function changes when the input is changed by a small amount. It is defined as the limit of the ratio of the change in the output to the change in the input, as the change in the input approaches zero.

What does the derivative represent?

Answer: The derivative represents the rate at which the function is changing with respect to the input variable x . It can also be interpreted as the instantaneous rate of change of the function at a specific point.

How do you calculate the derivative of a function?

Answer: To calculate the derivative of a function, we use a process called differentiation. There are several rules of differentiation that can be used to calculate the derivative of a function, including the power rule, the product rule, the quotient rule, and the chain rule.

What is the power rule?

Answer: The power rule is used to find the derivative of a function that is a power of x. The rule states that if $f(x)=x^{\wedge} n$, then $f^{\prime}(x)=n x^{\wedge}(n-1)$.

What is the product rule?

Answer: The product rule is used to find the derivative of a function that is the product of two functions. The rule states that if $f(x)=g(x) h(x)$, then $f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x)$.

What is the quotient rule?

Answer: The quotient rule is used to find the derivative of a function that is the quotient of two functions. The rule states that if $f(x)=g(x) / h(x)$, then $f^{\prime}(x)=\left[g^{\prime}(x) h(x)-g(x) h^{\prime}(x)\right] / h(x)^{\wedge} 2$.

What is the chain rule?

Answer: The chain rule is used to find the derivative of a composite function. The rule states that if $f(x)=$ $\mathrm{g}(\mathrm{h}(\mathrm{x}))$, then $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{h}(\mathrm{x})) \mathrm{h}^{\prime}(\mathrm{x})$.

Answer: The derivative has many applications in calculus. It is used to find the maximum and minimum values of a function, as well as the points where the function is increasing or decreasing. It is also used to find the inflection points of a function, which are points where the concavity of the function changes.

How is the derivative used in physics and engineering?

Answer: The derivative can be used to find the velocity of an object at a specific point in time or the rate of change of a chemical reaction. It is also used to find the slope of a tangent line to a curve, which is useful in physics, engineering, and other fields where rates of change are important.

What is the relationship between differentiation and integration?

Answer: Integration is the inverse of differentiation and is used to find the total change of a function over a given interval. The derivative and the integral are closely related, and understanding one is essential for understanding the other.

Lec 16 - Techniques of Differentiation

What is the power rule of differentiation?
Answer: The power rule states that the derivative of a function of the form $f(x)=x^{\wedge} n$ is given by $f^{\prime}(x)=$ $n x^{\wedge}(n-1)$.

How is the product rule used to find the derivative of a product of two functions?
Answer: The product rule states that if $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are two functions, then the derivative of their product is given by the formula $f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$.

What is the chain rule used for in differentiation?
Answer: The chain rule is used to find the derivative of a composite function.

How is the quotient rule used to find the derivative of a quotient of two functions?
Answer: The quotient rule states that if $f(x)$ and $g(x)$ are two functions, then the derivative of their quotient $f(x) / g(x)$ is given by the formula $\left(f^{\prime}(x) g(x)-f(x) g^{\prime}(x)\right) /(g(x))^{\wedge} 2$.

How are trigonometric identities used to simplify the derivatives of trigonometric functions?
Answer: Trigonometric identities can be used to simplify the derivatives of trigonometric functions and make them easier to compute.

What is logarithmic differentiation used for?
Answer: Logarithmic differentiation is a technique used to find the derivative of a function that is difficult to differentiate using other methods.

How is implicit differentiation used to find the derivative of an implicitly defined function?
Answer: Implicit differentiation is used to find the derivative of a function that is defined implicitly by an equation.

What is the difference between explicit and implicit differentiation?

Answer: Explicit differentiation is used to find the derivative of a function that is defined explicitly in terms of its independent variable, while implicit differentiation is used to find the derivative of a function that is defined implicitly by an equation.

What is the derivative of a constant function?
Answer: The derivative of a constant function is 0 .

What is the derivative of the natural logarithm function?
Answer: The derivative of the natural logarithm function $f(x)=\ln (x)$ is given by $f^{\prime}(x)=1 / x$.

Lec 17 - Derivatives of Trigonometric Function

What is the derivative of the sine function?
Answer: The derivative of the sine function is the cosine function.

What is the derivative of the cosine function?
Answer: The derivative of the cosine function is the negative of the sine function.

What is the derivative of the tangent function?
Answer: The derivative of the tangent function is the square of the secant function.

What is the derivative of the cotangent function?
Answer: The derivative of the cotangent function is the negative of the square of the cosecant function.

What is the derivative of the secant function?
Answer: The derivative of the secant function is the product of the secant and tangent functions.

What is the derivative of the cosecant function?

Answer: The derivative of the cosecant function is the negative of the product of the cosecant and cotangent functions.

How do you find the derivative of a product of two trigonometric functions?
Answer: You can use the product rule to find the derivative of a product of two trigonometric functions.

How do you find the derivative of a sum of two trigonometric functions?
Answer: You can use the sum rule to find the derivative of a sum of two trigonometric functions.

How do you find the derivative of the inverse trigonometric functions?
Answer: You can use the chain rule to find the derivative of the inverse trigonometric functions.

How do you find the derivative of a composition of a trigonometric function and another function?
Answer: You can use the chain rule to find the derivative of a composition of a trigonometric function and another function.

Lec 18 - The chain Rule

What is the chain rule in calculus?

The chain rule is a rule in calculus that enables us to differentiate composite functions by taking the derivative of the outer function and multiplying it by the derivative of the inner function.

Why do we need the chain rule?

We need the chain rule to differentiate complex functions that are composed of multiple functions. Without the chain rule, it would be challenging to find the derivative of such functions.

What is an example of a composite function?

An example of a composite function is $f(g(x))$, where f and g are functions of x.

How do we apply the chain rule?

To apply the chain rule, we differentiate the outer function with respect to its variable and multiply it by the derivative of the inner function with respect to its variable.

Can we apply the chain rule to any function?

No, we cannot apply the chain rule to all functions. It only applies to composite functions where one function is nested inside another function.

What is the derivative of $\sin \left(x^{\wedge} \mathbf{2}\right)$?
The derivative of $\sin \left(x^{\wedge} 2\right)$ is $\cos \left(x^{\wedge} 2\right) * 2 x$.

What is the derivative of $\mathrm{e}^{\wedge}(3 \mathrm{x}+2)$?
The derivative of $\mathrm{e}^{\wedge}(3 \mathrm{x}+2)$ is $3 \mathrm{e}^{\wedge}(3 \mathrm{x}+2)$.

What is the chain rule formula?

The chain rule formula is $(\mathrm{f}(\mathrm{g}(\mathrm{x})))^{\prime}=\mathrm{f}^{\prime}(\mathrm{g}(\mathrm{x})) * \mathrm{~g}^{\prime}(\mathrm{x})$.

What is the chain rule used for in real-life applications?

The chain rule is used in physics, engineering, and other fields where complex functions are encountered. It is essential in calculating rates of change and gradients of complex systems.

How can one remember the chain rule?

One way to remember the chain rule is to think of it as "outside inside," meaning that we differentiate the outer function first and then the inner function. Another way is to use the mnemonic device "DIDLO," which stands for differentiate the outer function, differentiate the inner function, and multiply.

Lec 19 - Implicit Differentiation

What is implicit differentiation?

Answer: Implicit differentiation is a method of finding the derivative of an equation that is not in the form of $y=f(x)$ but instead is in the form of an equation that relates x and y.

Why is implicit differentiation important in calculus and analytical geometry?
Answer: Implicit differentiation is important in calculus and analytical geometry as it helps to find derivatives of equations that cannot be easily solved for a single variable.

What is the difference between explicit and implicit functions?

Answer: An explicit function is one that can be written as $y=f(x)$, where y is explicitly defined as a function of x . On the other hand, an implicit function is one where the relationship between x and y is not explicitly defined.

How do you differentiate an implicit function?

Answer: To differentiate an implicit function, you differentiate both sides of the equation with respect to x , treating y as a function of x , and using the chain rule to differentiate any terms that involve y .

What is the chain rule?
Answer: The chain rule is a rule in calculus that allows you to find the derivative of a composite function.

Can implicit differentiation be used to find higher-order derivatives?
Answer: Yes, implicit differentiation can be used to find higher-order derivatives of implicit functions.

How do you find the second derivative using implicit differentiation?
Answer: To find the second derivative using implicit differentiation, you differentiate the first derivative with respect to x .

Can implicit differentiation be used to find derivatives of equations that are not functions of \mathbf{x} and \mathbf{y} ?
Answer: Yes, implicit differentiation can be used to find derivatives of equations that are not functions of x and y.

What is the slope of the tangent line to a circle at a given point?
Answer: The slope of the tangent line to a circle at a given point is given by $-\mathrm{x} / \mathrm{y}$.

In which fields is implicit differentiation used?
Answer: Implicit differentiation is used in many fields, including physics, engineering, economics, and other sciences that use calculus.

Lec 20 - Derivative of Logarithmic and Exponential Functions

What is the derivative of $\ln (x)$?
Answer: The derivative of $\ln (x)$ is $1 / x$.

What is the derivative of $\mathrm{e}^{\wedge} \mathrm{x}$?
Answer: The derivative of $\mathrm{e}^{\wedge} \mathrm{x}$ is $\mathrm{e}^{\wedge} \mathrm{x}$.

What is the derivative of $\ln (u)$, where u is a function of x ?
Answer: The derivative of $\ln (u)$ is $\mathrm{u}^{\prime} /(\mathrm{u})$.

What is the derivative of $e^{\wedge} u$, where u is a function of x ?
Answer: The derivative of $e^{\wedge} u$ is $e^{\wedge} u * u^{\prime}$.

What is the derivative of $\ln (a x)$, where a is a constant?
Answer: The derivative of $\ln (a x)$ is $1 /(x \ln (a))$.

What is the derivative of $\mathrm{e}^{\wedge}(\mathbf{a x})$, where a is a constant?
Answer: The derivative of $\mathrm{e}^{\wedge}(\mathrm{ax})$ is $\mathrm{ae}^{\wedge}(\mathrm{ax})$.

What is the derivative of $\ln \left(x^{\wedge} n\right)$, where n is a constant?
Answer: The derivative of $\ln \left(x^{\wedge} n\right)$ is n / x.

What is the derivative of $\mathrm{e}^{\wedge}(\mathrm{nx})$, where n is a constant?
Answer: The derivative of $\mathrm{e}^{\wedge}(\mathrm{nx})$ is $n \mathrm{e}^{\wedge}(\mathrm{nx})$.

What is the derivative of $\ln \left(\mathrm{e}^{\wedge} \mathrm{x}\right)$?
Answer: The derivative of $\ln \left(e^{\wedge} x\right)$ is 1 .

What is the derivative of $\mathrm{e}^{\wedge}(\ln (\mathrm{x}))$?
Answer: The derivative of $\mathrm{e}^{\wedge}(\ln (\mathrm{x}))$ is x .

Lec 21 - Applications of Differentiation

What is the fundamental concept of differentiation in calculus and analytical geometry?
Answer: The fundamental concept of differentiation is finding the derivative of a function, which describes its rate of change.

What are optimization problems, and how does differentiation help to solve them?

Answer: Optimization problems involve finding the maximum or minimum value of a function. Differentiation helps to solve them by finding the critical points of the function and analyzing the sign of the second derivative to determine whether they are maximum or minimum points.

What does the first derivative of a function represent?

Answer: The first derivative of a function represents the slope of the tangent line at each point, and it gives us information about whether the function is increasing or decreasing at each point.

What does the second derivative of a function represent?

Answer: The second derivative of a function represents the curvature of the function, and it gives us information about whether the function is concave up or concave down at each point.

What are constrained optimization problems, and how can they be solved using differentiation?
Answer: Constrained optimization problems involve finding the maximum or minimum value of a function subject to a constraint. They can be solved using the method of Lagrange multipliers, which involves finding the critical points of the function subject to the constraint.

How is differentiation used in physics to study motion and velocity?

Answer: The derivative of the position function gives us the velocity function, which describes the rate of change of the position at each point in time. The second derivative gives us the acceleration function, which describes the rate of change of the velocity.

What is complex analysis, and how is differentiation used in it?

Answer: Complex analysis involves the study of complex functions and their properties. Differentiation is used in complex analysis to find the complex derivative, which describes the rate of change of the function at each point in the complex plane.

What is the fundamental theorem of calculus, and how does it relate to differentiation?

Answer: The fundamental theorem of calculus states that differentiation and integration are inverse operations. The derivative of an integral function is equal to the original function.

Lec 22 - Relative Extrema

What are relative extrema?
Answer: Relative extrema are the local maximum or minimum values of a function within a given interval.

How do you find relative extrema?

Answer: To find relative extrema, we take the first derivative of the function, set it equal to zero, and solve for x . We then use the second derivative test to determine the nature of each critical point.

What is a critical point in calculus?

Answer: A critical point in calculus is a point on the function where the derivative is zero or undefined.

What is the second derivative test?

Answer: The second derivative test is a method used to determine whether a critical point corresponds to a relative maximum, relative minimum, or neither.

What is the second derivative of a function?

Answer: The second derivative of a function is the derivative of its first derivative.

What is a relative maximum?

Answer: A relative maximum is the highest point of a function within a given interval.

What is a relative minimum?

Answer: A relative minimum is the lowest point of a function within a given interval.

Can a function have more than one relative maximum or minimum?

Answer: Yes, a function can have multiple relative extrema.

What are some applications of relative extrema in economics?

Answer: Relative extrema can represent the maximum or minimum values of a cost function, profit function, or utility function in economics.

What are some applications of relative extrema in physics?

Answer: Relative extrema can represent the maximum or minimum values of a velocity or acceleration function in physics.

