MTH101
 Calculus And Analytical Geometry

Important mcqs

Lec 1 - Calculus And Analytical Geometry

1. Which of the following is the origin in the Cartesian coordinate system? a) $(0,1) b)(1,0) c)(0,0) d)$ $(1,1)$ Answer: c) (0,0)
2. What is the slope of a horizontal line? a) 0 b) 1 c) Undefined d) Infinity Answer: a) 0
3. Which of the following equations is in slope-intercept form? a) $2 x+3 y=6$ b) $y=4 x-2$ c) $5 x-2 y=8$ d) $x-3 y=9$ Answer: b) $\mathbf{y}=\mathbf{4 x} \mathbf{- 2}$
4. What is the equation of the line with a slope of $\mathbf{2}$ and a y-intercept of $\mathbf{- 3}$? a) $y=2 x+3 b) y=2 x-3 c$) $\mathrm{x}=2 \mathrm{y}+3$ d) $\mathrm{x}=2 \mathrm{y}-3$ Answer: b) $\mathrm{y}=\mathbf{2 x} \mathbf{- 3}$
5. Which of the following is not a quadrant in the Cartesian coordinate system? a) First quadrant b) Second quadrant c) Third quadrant d) Fifth quadrant Answer: d) Fifth quadrant
6. What is the equation of the line passing through points $(2,3)$ and $(4,5) ? a) y=2 x+1 b) y=2 x-1 c) y$ $=x+1$ d) $y=x-1$ Answer: b) $\mathbf{y}=\mathbf{2 x} \mathbf{- 1}$
7. Which of the following is the equation of a vertical line? a) $y=2 x+3$ b) $y=-4$ c) $x-3 y=6 d) y=x-$ 2 Answer: b) $y=-4$
8. What is the slope of a vertical line? a) Undefined b) 0 c) 1 d) Infinity Answer: a) Undefined
9. What is the x-coordinate of a point on the \mathbf{y}-axis? a) 0 b) 1 c) -1 d) Undefined Answer: a) $\mathbf{0}$
10. What is the y-coordinate of the point (5,8)? a) 5 b) 8 c) -5 d) -8 Answer: b) 8

Lec 2 - Absolute Value

1. What is the absolute value of -9 ?
a. -9
b. 9
c. 0
d. Undefined

Answer: b. 9
2. What is the absolute value of 0 ?
a. -1
b. 0
c. 1
d. Undefined

Answer: b. 0
3. What is the derivative of the absolute value function?
a. $1 / x$
b. $-1 / x$
c. 0
d. step function

Answer: d. step function
4. Which of the following is true about the absolute value function?
a. It is a continuous function for all real numbers.
b. It is a discontinuous function for all real numbers.
c. It is a differentiable function for all real numbers.
d. It is an odd function.

Answer: a. It is a continuous function for all real numbers.
5. What is the range of the absolute value function?
a. (-?, ?)
b. $[0$, ?)
c. $[0,1)$
d. $[-1,1]$

Answer: b. [0, ?)
6. Which of the following is true about the absolute value function graph?
a. It is a straight line passing through the origin.
b. It is a straight line passing through the point $(1,1)$.
c. It is a V -shaped curve with the vertex at the origin.
d. It is a U-shaped curve with the vertex at the origin.

Answer: c. It is a V-shaped curve with the vertex at the origin.
7. What is the limit of the absolute value function as x approaches infinity?
a. -?
b. ?
c. 0
d. Does not exist

Answer: b. ?
8. Which of the following is true about the absolute value of a negative number?
a. It is negative.
b. It is positive.
c. It is zero.
d. It is undefined.

Answer: b. It is positive.
9. What is the distance between points $(3,4)$ and $(1,2)$?
a. 1
b. 2
c. ?2
d. ?10

Answer: c. ?2
10. Which of the following is true about the integral of the absolute value function?
a. It is always positive.
b. It is always negative.
c. It is always zero.
d. It can be positive, negative, or zero depending on the limits of integration.

Answer: d. It can be positive, negative, or zero depending on the limits of integration.

Lec 3 - Coordinate Planes and Graphs

1. What is the equation of the vertical line passing through the point $(-3,5)$?
a) $x=-3$
b) $y=-3$
c) $x=5$
d) $y=5$

Solution: a) $x=-3$
2. What are the coordinates of the origin on a coordinate plane?
a) $(1,1)$
b) $(-1,-1)$
c) $(0,0)$
d) $(2,2)$

Solution: c) (0,0)
3. What is the slope of the line passing through the points $(3,5)$ and $(1,2)$?
a) $3 / 2$
b) $-3 / 2$
c) $2 / 3$
d) $-2 / 3$

Solution: b) -3/2
4. Which quadrant contains the point (-4,-2)?
a) First
b) Second
c) Third
d) Fourth

Solution: c) Third

5. What is the distance between points $(2,5)$ and $(-3,1)$?
a) 2
b) 5
c) $\mathrm{sqrt}(26)$
d) $\operatorname{sqrt}(29)$

Solution: d) sqrt(29)
6. What is the slope of the line perpendicular to the line $y=3 x-2$?
a) $3 / 2$
b) $-3 / 2$
c) $-1 / 3$
d) $1 / 3$

Solution: c) -1/3
7. Which of the following is an equation of a vertical line?
a) $y=2 x+3$
b) $x=4$
c) $y=-x+1$
d) $x+y=7$

Solution: b) $x=4$
8. What is the equation of the line passing through the points $(2,-3)$ and $(4,5)$?
a) $y=-2 x+1$
b) $y=2 x-7$
c) $y=-4 x-11$
d) $y=4 x-11$

Solution: d) $y=4 x-11$
9. What is the slope-intercept form of the equation of the line passing through the point $(2,4)$ with a slope of $-2 ?$
a) $y=-2 x-4$
b) $y=-2 x+8$
c) $y=2 x-4$
d) $y=2 x+4$

Solution: a) $y=-2 x+8$
10. What is the equation of the line passing through the points $(-1,3)$ and $(5,-1)$?
a) $y=-x+2$
b) $y=x+2$
c) $y=-x-2$
d) $y=x-2$

Solution: c) $y=-x+2$

Lec 4 - Lines

1. What is the slope of a horizontal line?
a) Positive
b) Negative
c) Zero
d) Undefined

Solution: c) Zero
2. What is the equation of a line with a slope of 2 and a y-intercept of $\mathbf{3}$?
a) $y=2 x+3$
b) $y=3 x+2$
c) $y=2 x-3$
d) $y=-2 x+3$

Solution: a) $y=2 x+3$
3. What is the y-intercept of a line with an equation of $y=-5 x+7$?
a) -5
b) 5
c) 7
d) -7

Solution: c) 7
4. What is the slope of a line that passes through points $(3,5)$ and $(8,11)$?
a) 3
b) 2
c) 1
d) 6

Solution: b) 2
5. What is the slope of a vertical line?
a) Positive
b) Negative
c) Zero
d) Undefined

Solution: d) Undefined
6. What is the equation of a line that passes through the points $(-2,4)$ and $(4,-2)$?
a) $y=x+2$
b) $y=-x-2$
c) $y=-x+2$
d) $y=x-2$

Solution: b) $y=-x-2$
7. What is the y-intercept of a line with an equation of $y=2 x-6$?
a) -2
b) 2
c) -6
d) 6

Solution: c) -6
8. What is the slope of a line that is parallel to the line $y=4 x+2$?
a) 4
b) -4
c) $1 / 4$
d) $-1 / 4$

Solution: a) 4
9. What is the equation of a line that is perpendicular to the line $y=-3 x+5$ and passes through the point $(2,4)$?
a) $y=-1 / 3 x+10 / 3$
b) $y=-3 x+10$
c) $y=1 / 3 x+2 / 3$
d) $y=3 x-2$

Solution: a) $y=-1 / 3 x+10 / 3$
10. What is the slope of a line that passes through the points $(0,4)$ and $(4,0)$?
a) 4
b) -4
c) 1
d) -1

Solution: b) -4

Lec 5 - Distance; Circles, Quadratic Equations

1. What is the distance between points $(3,4)$ and $(-2,1)$?
A. 3
B. 5
C. 7
D. 9

Solution: B. Using the distance formula, the distance between the two points is $\mathbf{d}=\operatorname{sqrt}((-2-$ $\left.3)^{\wedge} 2+(1-4)^{\wedge} 2\right)=\operatorname{sqrt}(25+9)=\operatorname{sqrt}(34) ? 5.83$ units.
2. What is the center and radius of the circle with equation $(x+2)^{\wedge} \mathbf{2}+(y-5)^{\wedge} \mathbf{2}=16$?
A. Center: $(-2,5)$; Radius: 16
B. Center: $(-2,5)$; Radius: 4
C. Center: (2, -5); Radius: 4
D. Center: $(2,-5)$; Radius: 16

Solution: A. The center of the circle is ($-2,5$), and the radius is the square root of 16 , which is 4 .
3. What is the discriminant of the quadratic equation $2 x^{\wedge} 2+3 x-5=0$?
A. -31
B. -11
C. 11
D. 31

Solution: D. The discriminant is $b^{\wedge} 2-4 a c=3^{\wedge} 2-4(2)(-5)=31$, which is positive. Therefore, the equation has two real solutions.
4. What is the distance between points $(-1,2)$ and $(3,-4)$?
A. 5
B. 6
C. 7
D. 8

Solution: B. Using the distance formula, the distance between the two points is $\mathbf{d}=\operatorname{sqrt}\left({ }^{(3-}\right.$ $\left.(-1))^{\wedge} 2+(-4-2)^{\wedge} 2\right)=\operatorname{sqrt}(16+36)=\operatorname{sqrt}(52) ? 7.21$ units.
5. What is the equation of the circle with center $(-3,4)$ and radius 6 ?
A. $(x+3)^{\wedge} 2+(y-4)^{\wedge} 2=6$
B. $(x-3)^{\wedge} 2+(y+4)^{\wedge} 2=36$
C. $(x+3)^{\wedge} 2+(y-4)^{\wedge} 2=36$
D. $(x-3)^{\wedge} 2+(y+4)^{\wedge} 2=6$

Solution: C. The equation of a circle with center (h, k) and radius r is $(x-h)^{\wedge} \mathbf{2}+(y-k)^{\wedge} \mathbf{2}=$ $r^{\wedge} 2$. Therefore, the equation of the circle with center $(-3,4)$ and radius 6 is $(x+3)^{\wedge} 2+(y-$ 4)^2 $=36$.
6. What are the solutions of the quadratic equation $x^{\wedge} 2-5 x+6=0$?
A. $x=2, x=3$
B. $x=2, x=4$
C. $x=3, x=4$
D. $x=4, x=5$

Solution: A. Factoring the quadratic equation gives $(x-2)(x-3)=0$, so the solutions are $x=$ 2 and $x=3$.
7. What is the center and radius of the circle with equation $x^{\wedge} 2+y^{\wedge} 2-6 x+8 y-19=0$?
A. Center: (3, -4); Radius: 5
B. Center: $(-3,4)$;

Lec 6 - Functions and Limits

1. What is the limit of the function $f(x)=2 x+1$ as x approaches 3 ?
a) 5
b) 7
c) 8
d) 9

Answer: b) 7
Solution: When x approaches 3 , the value of $f(x)$ approaches $(2 * 3+1)=7$.
2. Which of the following functions is continuous at $\mathbf{x}=0$?
a) $f(x)=1 / x$
b) $f(x)=x^{\wedge} 2$
c) $f(x)=|x|$
d) $f(x)=\operatorname{sqrt}(x)$

Answer: b) $f(x)=x^{\wedge} 2$
Solution: The function $f(x)=x^{\wedge} 2$ is continuous at $x=0$ because the limit of $f(x)$ as x approaches 0 is equal to $f(0)=0$.
3. What is the derivative of the function $f(x)=x^{\wedge} 3$?
a) $3 x^{\wedge} 2$
b) $2 x^{\wedge} 3$
c) $4 x^{\wedge} 3$
d) $x^{\wedge} 2$

Answer: a) $3 x^{\wedge}$ 2
Solution: The derivative of $f(x)=x^{\wedge} 3$ is $f^{\prime}(x)=3 x^{\wedge} 2$.
4. What is the integral of the function $f(x)=1 / x$?
a) $\ln (x)+C$
b) $x^{\wedge} 2 / 2+C$
c) $2 x+C$
d) $e^{\wedge} x+C$

Answer: a) $\ln (x)+C$
Solution: The integral of $f(x)=1 / x$ is $F(x)=\ln |x|+C$.
5. What is the domain of the function $f(x)=\operatorname{sqrt}(x-4)$?
a) (-infinity, 4]
b) $[4$, infinity)
c) $[0$, infinity)
d) (-infinity, infinity)

Answer: b) [4, infinity)
Solution: The function $f(x)=\operatorname{sqrt}(x-4)$ is defined only for $x>=4$, which gives the domain [4, infinity).
6. What is the limit of the function $f(x)=\sin (x) / x$ as x approaches 0 ?
a) 0
b) 1
c) -1
d) does not exist

Answer: b) 1
Solution: The limit of $f(x)=\sin (x) / x$ as x approaches 0 is 1 , which can be proved using L'Hopital's rule or the squeeze theorem.
7. Which of the following functions is not differentiable at $\mathbf{x}=\mathbf{0}$?
a) $f(x)=|x|$
b) $f(x)=x^{\wedge} 2$
c) $f(x)=\operatorname{sqrt}(x)$
d) $f(x)=1 / x$

Answer: a) $f(x)=|x|$
Solution: The function $f(x)=|x|$ is not differentiable at $x=0$ because it has a sharp point at that point.
8. What is the integral of the function $f(x)=2 x$?
a) $x^{\wedge} 2+C$
b) $x^{\wedge} 2+1$
c) $x^{\wedge} 3+C$
d) $2 x^{\wedge} 2+C$

Answer: a) $x^{\wedge} 2+C$
Solution: The integral of $f(x)=2 x$ is $F(x)=x^{\wedge} 2+C$.
9. What is the limit of the function $f(x)=\left(x^{\wedge} 2-4\right) /(x-2)$ as x approaches 2 ?
a) 0
b) 1
c) 2
d) does not exist

Answer: c)

Lec 7 - Operations on Functions

1. What is the composition of two functions f and g ?
A. $f(x)+g(x)$
B. $f(x) g(x)$
C. $f(g(x))$
D. $g(f(x))$

Solution: C
2. What is the domain of the function $f(x)=1 / x$?
A. all real numbers except 0
B. all real numbers
C. all positive real numbers
D. all negative real numbers

Solution: A
3. Which of the following is an example of a polynomial function?
A. $f(x)=1 / x$
B. $f(x)=x^{\wedge} 2+3 x-5$
C. $f(x)=$? x
D. $f(x)=e^{\wedge} x$

Solution: B
4. What is the range of the function $f(x)=\sin (x)$?
A. $[-1,1]$
B. $(-$?, ?)
C. $[0,1]$
D. $[-? / 2, ? / 2]$

Solution: A
5. What is the inverse of the function $f(x)=2 x-3$?
A. $f^{\wedge}-1(x)=x / 2+3 / 2$
B. $f^{\wedge}-1(x)=2 x+3$
C. $f^{\wedge}-1(x)=(x-3) / 2$
D. $f^{\wedge}-1(x)=3-x / 2$

Solution: C
6. Which of the following is an example of an odd function?
A. $f(x)=x^{\wedge} 2$
B. $f(x)=x^{\wedge} 3$
C. $f(x)=\sin (x)$
D. $f(x)=\cos (x)$

Solution: B
7. What is the difference between the domain and range of a function?
A. There is no difference.
B. The domain is the set of all input values, while the range is the set of all output values.
C. The domain is the set of all output values, while the range is the set of all input values.
D. The domain and range are the same things.

Solution: B
8. What is the equation of the line that passes through points $(1,2)$ and $(3,4)$?
A. $y=2 x-1$
B. $y=x+1$
C. $y=2 x+1$
D. $y=x-1$

Solution: D
9. What is the composite function of $f(x)=x^{\wedge} 2$ and $g(x)=x+1$?
A. $f(g(x))=(x+1)^{\wedge} 2$
B. $f(g(x))=x^{\wedge} 2+1$
C. $g(f(x))=x^{\wedge} 2+1$
D. $g(f(x))=(x+1)^{\wedge} 2$

Solution: A
10. What is the degree of the polynomial function $f(x)=3 x^{\wedge} 4+2 x^{\wedge} 3-5 x^{\wedge} 2+7$?
A. 0
B. 2
C. 3
D. 4

Solution: D

Lec 8 - Graphing Functions

1. Which axis represents the independent variable or input values in a graph?
a. x-axis
b. y-axis
c. origin
d. none of the above

Answer: a. x-axis
2. What is the purpose of graphing functions?
a. To visualize the behavior of a function
b. To solve equations
c. To memorize formulas
d. None of the above

Answer: a. To visualize the behavior of a function

3. How do we find the x-intercepts of a function?
a. Set the function equal to zero and solve for x
b. Set x equal to zero and solve for y
c. Take the derivative of the function
d. None of the above

Answer: a. Set the function equal to zero and solve for \mathbf{x}
4. Which type of function has a minimum at its vertex with a positive leading coefficient?
a. Even-degree functions
b. Odd-degree functions
c. Both even-degree and odd-degree functions
d. None of the above

Answer: a. Even-degree functions

5. Which type of function has a maximum at its vertex with a negative leading coefficient?
a. Even-degree functions
b. Odd-degree functions
c. Both even-degree and odd-degree functions
d. None of the above

Answer: a. Even-degree functions
6. Which type of function is symmetric about the y-axis?
a. Even functions
b. Odd functions
c. Both even and odd functions
d. None of the above

Answer: a. Even functions
7. Which type of function is symmetric about the origin?
a. Even functions
b. Odd functions
c. Both even and odd functions
d. None of the above

Answer: b. Odd functions

8. What are the critical points?
a. The points where the function is equal to zero
b. The points where the derivative is equal to zero or does not exist
c. The points where the function intersects the y-axis
d. None of the above

Answer: b. The points where the derivative is equal to zero or does not exist
9. How do we determine the location of local extrema?
a. We test the sign of the derivative on either side of the critical point
b. We test the sign of the second derivative on either side of the critical point
c. We set the derivative equal to zero and solve for x
d. None of the above

Answer: a. We test the sign of the derivative on either side of the critical point
10. How do we determine the location of inflection points?
a. We test the sign of the derivative on either side of the critical point
b. We test the sign of the second derivative on either side of the critical point
c. We set the second derivative equal to zero and solve for x
d. None of the above

Answer: b. We test the sign of the second derivative on either side of the critical point

Lec 9 - Limits (Intuitive Introduction)

1. What is the limit of $f(x)$ as x approaches 3 for the function $f(x)=x+2$?
a) 3
b) 5
c) 6
d) None of the above

Solution: b) 5
2. What is the limit of $f(x)$ as x approaches infinity for the function $f(x)=1 / x$?
a) 0
b) 1
c) infinity
d) None of the above

Solution: a) 0
3. What is the limit of $f(x)$ as x approaches 2 for the function $f(x)=(x-2) /(x+4)$?
a) 2
b) 0
c) 1
d) None of the above

Solution: b) 0
4. What is the limit of $f(x)$ as x approaches -3 for the function $f(x)=|x+3|$?
a) -3
b) 0
c) 3
d) None of the above

Solution: c) 3
5. What is the limit of $f(x)$ as x approaches 0 for the function $f(x)=\sin (x) / x$?
a) 1
b) 0
c) -1
d) None of the above

Solution: a) 1
6. What is the limit of $f(x)$ as x approaches 4 for the function $f(x)=(x-4) /\left(x^{\wedge} 2-16\right)$?
a) $1 / 12$
b) $1 / 4$
c) $1 / 8$
d) None of the above

Solution: b) $1 / 4$
7. What is the limit of $f(x)$ as x approaches -infinity for the function $f(x)=e^{\wedge} x$?
a) 0
b) -1
c) infinity
d) None of the above

Solution: a) 0

8. What is the limit of $f(x)$ as x approaches 1 for the function $f(x)=(x-1) /\left(x^{\wedge} 2-1\right)$?
a) $-1 / 2$
b) $1 / 2$
c) 1
d) None of the above

Solution: b) $1 / 2$

9. What is the limit of $f(x)$ as x approaches 2 for the function $f(x)=\left(x^{\wedge} 2-4\right) /(x-2)$?
a) 2
b) 0
c) 4
d) None of the above

Solution: c) 4

10. What is the limit of $f(x)$ as x approaches 0 for the function $f(x)=(1-\cos (x)) / x^{\wedge} 2$?
a) 0
b) $1 / 2$
c) infinity
d) None of the above

Solution: b) $1 / 2$

Lec 10 - Limits (Computational Techniques)

1. What is the limit of the function $f(x)=3 x+1$ as x approaches 2 ?
a) 7
b) 8
c) 9
d) 10

Answer: b) 8
2. What is the limit of the function $f(x)=\left(x^{\wedge} 2-9\right) /(x-3)$ as x approaches 3 ?
a) 6
b) 7
c) 8
d) 9

Answer: d) 9
3. What is the limit of the function $f(x)=(2 x-3) /(x+1)$ as x approaches -1 ?
a) -2
b) -1
c) 0
d) 1

Answer: a) -2
4. What is the limit of the function $f(x)=\sin (x) / x$ as x approaches 0 ?
a) 0
b) 1
c) pi
d) infinity

Answer: b) 1
5. What is the limit of the function $f(x)=\left(x^{\wedge} 3-8\right) /(x-2)$ as x approaches 2 ?
a) 0
b) 1
c) 2
d) infinity

Answer: c) 2
6. What is the limit of the function $f(x)=e^{\wedge}(2 x)$ as x approaches infinity?
a) 0
b) 1
c) infinity
d) -infinity

Answer: c) infinity
7. What is the limit of the function $f(x)=\left(x^{\wedge} 2+2 x-3\right) /\left(x^{\wedge} 2-4\right)$ as x approaches 2 ?
a) 0
b) $1 / 4$
c) $1 / 2$
d) 1

Answer: c) 1/2
8. What is the limit of the function $f(x)=(x-1)^{\wedge} 3 /\left(x^{\wedge} 2-x-2\right)$ as x approaches 2 ?
a) -infinity
b) -1
c) 0
d) infinity

Answer: b) -1
9. What is the limit of the function $f(x)=1 /(x-2)^{\wedge} 2$ as x approaches 2 ?
a) 0
b) 1
c) infinity
d) -infinity

Answer: c) infinity
10. What is the limit of the function $f(x)=\ln (x+1) / x$ as x approaches 0 ?
a) 0
b) 1
c) e
d) infinity

Answer: b) 1

Lec 11 - Limits (Rigorous Approach)

1. What is the limit of $f(x)$ as x approaches 2 if $f(x)=x^{\wedge} 2-3 x+2$?
A. 1
B. 2
C. 3
D. 4

Answer: D. 4
2. What is the limit of $g(x)$ as x approaches 0 if $g(x)=\sin (x) / x$?
A. 0
B. 1
C. -1
D. Does not exist

Answer: B. 1
3. What is the limit of $h(x)$ as x approaches infinity if $h(x)=5 / x$?
A. 0
B. 5
C. infinity
D. Does not exist

Answer: A. 0
4. What is the limit of $j(x)$ as x approaches 1 if $j(x)=(x-1) /\left(x^{\wedge} 2-1\right)$?
A. 0
B. 1
C. -1
D. Does not exist

Answer: B. 1
5. What is the limit of $k(x)$ as x approaches infinity if $k(x)=(3 x-2) /(4 x+1)$?
A. $3 / 4$
B. $2 / 3$
C. $3 / 1$
D. Does not exist

Answer: A. 3/4
6. What is the limit of $f(x)$ as x approaches 0 if $f(x)=(2 x+1) /(x-3)$?
A. $1 / 3$
B. $2 / 3$
C. $-1 / 3$
D. Does not exist

Answer: D. Does not exist
7. What is the limit of $g(x)$ as x approaches 2 if $g(x)=\left(x^{\wedge} 2-4\right) /(x-2)$?
A. 0
B. 1
C. 2
D. Does not exist

Answer: C. 2
8. What is the limit of $h(x)$ as x approaches 3 if $h(x)=\operatorname{sqrt}(x-3)$?
A. 0
B. 1
C. 3
D. Does not exist

Answer: D. Does not exist
9. What is the limit of $j(x)$ as x approaches infinity if $j(x)=e^{\wedge}(-2 x)$?
A. 0
B. 1
C. -1
D. Does not exist

Answer: A. 0
10. What is the limit of $k(x)$ as x approaches 1 if $k(x)=(x-1)^{\wedge} 2 /|x-1|$?
A. 0
B. 1
C. Does not exist
D. infinity

Answer: C. Does not exist

Lec 12 - Continuity

1. What is continuity?
A) A property of a function that relates to its smoothness
B) A property of a function that relates to its differentiability
C) A property of a function that relates to its integrability
D) A property of a function that relates to its convergence

Answer: A) A property of a function that relates to its smoothness
2. What is the importance of continuity in calculus?
A) It allows us to define the derivative and integral of a function
B) It allows us to calculate the area under the curve
C) It allows us to partition the interval into smaller subintervals
D) It allows us to describe the behavior of curves in space

Answer: A) It allows us to define the derivative and integral of a function
3. How is continuity related to the derivative of a function?
A) If a function is continuous, then the derivative exists
B) If a function is discontinuous, then the derivative exists
C) If a function is continuous, then the derivative does not exist
D) If a function is discontinuous, then the derivative does not exist

Answer: A) If a function is continuous, then the derivative exists
4. How is the concept of continuity related to limits?
A) The concept of continuity is closely related to the concept of limits
B) The concept of continuity is not related to the concept of limits
C) The concept of continuity is the same as the concept of limits
D) The concept of continuity is the opposite of the concept of limits

Answer: A) The concept of continuity is closely related to the concept of limits
5. What is the integral of a function?
A) The slope of the tangent line to the curve
B) The limit of the difference quotient
C) The area under the curve
D) The maximum value of the function

Answer: C) The area under the curve

6. How is the concept of continuity related to the integral of a function?
A) The concept of continuity allows us to make precise approximations of the area under the
curve
B) The concept of continuity does not relate to the integral of a function
C) The concept of continuity allows us to calculate the maximum value of the function
D) The concept of continuity allows us to partition the interval into smaller subintervals

Answer: A) The concept of continuity allows us to make precise approximations of the area under the curve

7. What is the limit of a function?
A) The value that the function approaches as the input variable approaches a particular value
B) The maximum value of the function
C) The minimum value of the function
D) The slope of the tangent line to the curve

Answer: A) The value that the function approaches as the input variable approaches a particular value

8. How is continuity related to making predictions about the behavior of a function?
A) The concept of continuity allows us to make predictions about the behavior of a function as it approaches a particular point by calculating limits precisely.
B) The concept of continuity has no relation to making predictions about the behavior of a
function
C) The concept of continuity allows us to describe the behavior of curves in space
D) The concept of continuity allows us to define the derivative and integral of a function

Answer: A) The concept of continuity allows us to make predictions about the behavior of a function as it approaches a particular point by calculating limits precisely.
9. How is continuity important in analytical geometry?
A) It allows us to define the derivative and integral of a function
B) It allows us to describe the behavior of curves in space
C) It allows us to calculate the area under the curve
D) It allows us to partition

Lec 13-Limits and Continuity of Trigonometric Functions

What is the limit of the sine function as x approaches infinity?
a) 0
b) 1
c) does not exist
d) -1

Answer: c) does not exist

What is the limit of the cosine function as x approaches $? / 2$?
a) 0
b) 1
c) does not exist
d) -1

Answer: c) does not exist

What is the derivative of the function $f(x)=\cos (x)-2 \sin (x)$?
a) $-\cos (x)-2 \cos (x)$
b) $-\sin (x)-2 \cos (x)$
c) $\sin (\mathrm{x})-2 \cos (\mathrm{x})$
d) $-\sin (x)+2 \cos (x)$

Answer: b) $-\sin (\mathrm{x})-2 \cos (\mathrm{x})$

Which of the following trigonometric functions has a vertical asymptote at $\mathrm{x}=\boldsymbol{?} / \mathbf{2}$?
a) sine
b) cosine
c) tangent
d) none of the above

Answer: c) tangent

What is the limit of the tangent function as x approaches $\boldsymbol{?} / \mathbf{2}$ from the left?
a) - ?
b) ?
c) does not exist
d) 0

Answer: a) - ?

Which of the following trigonometric functions is continuous on the entire real line?
a) sine
b) cosine
c) tangent
d) none of the above

Answer: d) none of the above

What is the derivative of the function $f(x)=\sin (x) \cos (x)$?
a) $\cos ^{\wedge} 2(x)$
b) $-\cos ^{\wedge} 2(x)$
c) $2 \sin (x) \cos (x)$
d) $-2 \sin (x) \cos (x)$

Answer: c) $2 \sin (\mathrm{x}) \cos (\mathrm{x})$

Which of the following functions is not continuous at $\mathbf{x}=0$?
a) $\sin (x) / x$
b) $\cos (x) / x$
c) $\tan (x) / x$
d) all of the above are continuous at $\mathrm{x}=0$

What is the limit of the function $f(x)=\sin (1 / x)$ as x approaches 0 ?
a) 0
b) does not exist
c) 1
d) -1

Answer: b) does not exist

What is the maximum value of the function $f(x)=2 \sin (x)+3 \cos (x)$ on the interval $[0,2 ?]$?
a) 5
b) -5
c) 2
d) 3

Answer: a) 5

Lec 14 - Tangent Lines, Rates of Change

What is the derivative of a function?
a) The instantaneous rate of change of a function at a specific point
b) The average rate of change of a function over an interval
c) The slope of the tangent line at a specific point
d) Both a and c

Solution: d) Both a and c

What is the equation of a tangent line at a specific point?
a) $y=m x+b$
b) $y=f(x)+b$
c) $y-y 1=m(x-x 1)$
d) None of the above

Solution: c) $y-y 1=m(x-x 1)$, where m is the slope of the tangent line and $(x 1, y 1)$ is the point of tangency.

What is the instantaneous rate of change of a function?

a) The slope of the tangent line at a specific point
b) The average rate of change of a function over an interval
c) The maximum rate of change of a function
d) None of the above

Solution: a) The slope of the tangent line at a specific point.

What is the relationship between the slope of the tangent line and the slope of the curve at a specific point?
a) The slope of the tangent line is greater than the slope of the curve
b) The slope of the tangent line is less than the slope of the curve
c) The slope of the tangent line is equal to the slope of the curve
d) There is no relationship between the two slopes

Solution: c) The slope of the tangent line is equal to the slope of the curve at a specific point.

What is the average rate of change of a function over an interval?

a) The difference in the function values at the endpoints of the interval
b) The difference in the independent variable values at the endpoints of the interval
c) The difference in the function values divided by the difference in the independent variable values
d) None of the above

Solution: c) The difference in the function values divided by the difference in the independent variable values.

What is the derivative of a constant function?

a) 0
b) 1
c) The constant itself
d) None of the above

Solution: a) 0 , as the slope of a constant function is always 0 .

What is the relationship between the derivative of a function and the slope of the tangent line?
a) The derivative of a function is the slope of the tangent line
b) The slope of the tangent line is the integral of the function
c) The derivative of a function is the average rate of change over an interval
d) None of the above

Solution: a) The derivative of a function is the slope of the tangent line at a specific point.

What is the relationship between the derivative of a function and the rate of change of the function?
a) The derivative of a function is the average rate of change over an interval
b) The derivative of a function is the instantaneous rate of change at a specific point
c) The derivative of a function is not related to the rate of change of the function
d) None of the above

Solution: b) The derivative of a function is the instantaneous rate of change at a specific point.

What is the derivative of $f(x)=x^{\wedge} \mathbf{2}$?
a) $f^{\prime}(x)=2 x$
b) $f^{\prime}(x)=x^{\wedge} 2$
c) $f^{\prime}(x)=1 / x$
d) None of the above

Solution: a) $f^{\prime}(x)=2 x$, as the derivative of $x^{\wedge} 2$ is $2 x$.

Lec 15 - The Derivative

What is the derivative of $f(x)=x^{\wedge} 2$ at $x=3$?
a) 3
b) 6
c) 9
d) 12

Answer: b) 6 (Using the power rule, $f^{\prime}(x)=2 x$, so $f^{\prime}(3)=2(3)=6$)

What is the derivative of $f(x)=\cos (x)$ at $x=p i / 4$?
a) -1
b) $-\sin (\mathrm{p} / 4)$
c) $\cos (\mathrm{p} / 4)$
d) $-\cos (\mathrm{p} / 4)$

Answer: d$)-\cos (\mathrm{pi} / 4)\left(\right.$ Using the chain rule, $\mathrm{f}^{\prime}(\mathrm{x})=-\sin (\mathrm{x})$, so $\left.\mathrm{f}^{\prime}(\mathrm{pi} / 4)=-\sin (\mathrm{pi} / 4)=-\cos (\mathrm{pi} / 4)\right)$

What is the derivative of $f(x)=e^{\wedge} x$ at $x=0$?
a) 0
b) 1
c) e
d) $\mathrm{e}^{\wedge}-1$

Answer: b) 1 (Using the power rule, $f^{\prime}(x)=e^{\wedge} x$, so $\left.f^{\prime}(0)=e^{\wedge} 0=1\right)$

What is the derivative of $f(x)=\ln (x)$ at $x=1$?
a) 0
b) 1
c) -1
d) undefined

Answer: b) 1 (Using the derivative of $\ln (x), f^{\prime}(x)=1 / x$, so $f^{\prime}(1)=1 / 1=1$)

What is the derivative of $f(x)=5 x^{\wedge} 4-3 x^{\wedge} 2+2 x-1 ?$
a) $20 x^{\wedge} 3-6 x+2$
b) $20 x^{\wedge} 3-6 x^{\wedge} 2+2$
c) $20 x^{\wedge} 3-6 x+1$
d) $20 x^{\wedge} 4-6 x^{\wedge} 2+2$

Answer: a) $20 x^{\wedge} 3-6 x+2$ (Using the power rule, $f^{\prime}(x)=20 x^{\wedge} 3-6 x^{\wedge} 2+2$)

What is the derivative of $f(x)=\operatorname{sqrt}(x)$ at $x=4$?
a) $1 / 8$
b) $1 / 4$
c) $1 / 2$
d) 2

Answer: b) $1 / 4$ (Using the derivative of $\operatorname{sqrt}(x), f^{\prime}(x)=1 /(2 \operatorname{sqrt}(x))$, so $\left.f^{\prime}(4)=1 /(2 \operatorname{sqrt}(4))=1 / 4\right)$

What is the derivative of $f(x)=\sin (x)+\cos (x)$ at $x=p i / 3$?
a) $-1 / 2$
b) 0
c) $1 / 2$
d) $\operatorname{sqrt}(3) / 2$

Answer: c) $1 / 2$ (Using the sum rule and the derivative of $\sin (x)$ and $\cos (x), \mathrm{f}^{\prime}(\mathrm{x})=\cos (\mathrm{x})-\sin (\mathrm{x})$, so $\mathrm{f}^{\prime}(\mathrm{pi} / 3)=$ $\cos (\mathrm{pi} / 3)-\sin (\mathrm{pi} / 3)=1 / 2-\operatorname{sqrt}(3) / 2=1 / 2-1 / 2 \operatorname{sqrt}(3)=1 / 2(1-1 / \mathrm{sqrt}(3))=1 / 2(1-\operatorname{sqrt}(3) / 3)=1 / 2-\operatorname{sqrt}(3) / 6$ $=1 / 2-0.289=0.211$)

What is the derivative of $f(x)=1 / x$ at $x=2$?
a) $-1 / 4$
b

Lec 16 - Techniques of Differentiation

What is the derivative of $f(x)=x^{\wedge} 3+4 x^{\wedge} 2-5 x-2$?
a) $f^{\prime}(x)=3 x^{\wedge} 2+8 x-5$
b) $f^{\prime}(x)=3 x^{\wedge} 2+8 x+5$
c) $f^{\prime}(x)=3 x^{\wedge} 3+8 x^{\wedge} 2-5 x-2$
d) $f^{\prime}(x)=3 x^{\wedge} 2+4 x-5$

Solution: The derivative of $f(x)$ is $f^{\prime}(x)=3 x^{\wedge} 2+8 x-5$. Therefore, the correct answer is an option (a).

What is the derivative of $f(x)=\sin (x) \cos (x)$?
a) $f^{\prime}(x)=\cos (x) \sin (x)$
b) $f^{\prime}(x)=\cos ^{\wedge} 2(x)-\sin ^{\wedge} 2(x)$
c) $f^{\prime}(x)=-\sin (x) \cos (x)$
d) $f^{\prime}(x)=2 \cos (x) \sin (x)$

Solution: Using the product rule, we get $\mathrm{f}^{\prime}(\mathrm{x})=\cos (\mathrm{x}) \cos (\mathrm{x})-\sin (\mathrm{x}) \sin (\mathrm{x})=\cos ^{\wedge} 2(\mathrm{x})-\sin ^{\wedge} 2(\mathrm{x})$. Therefore, the correct answer is option (b).

What is the derivative of $f(x)=3 x^{\wedge} 4-2 x^{\wedge} 3+5 x^{\wedge} 2-4 x+1$?
a) $f^{\prime}(x)=12 x^{\wedge} 3-6 x^{\wedge} 2+10 x-4$
b) $f^{\prime}(x)=12 x^{\wedge} 3-6 x^{\wedge} 2+5 x-4$
c) $f^{\prime}(x)=3 x^{\wedge} 3-2 x^{\wedge} 2+5 x-4$
d) $f^{\prime}(x)=3 x^{\wedge} 3-2 x^{\wedge} 2+10 x-4$

Solution: The derivative of $f(x)$ is $f^{\prime}(x)=12 x^{\wedge} 3-6 x^{\wedge} 2+10 x-4$. Therefore, the correct answer is option (a).

What is the derivative of $f(x)=e^{\wedge} x \cos (x)$?
a) $f^{\prime}(x)=e^{\wedge} x \sin (x)$
b) $f^{\prime}(x)=e^{\wedge} x(\cos (x)+\sin (x))$
c) $f^{\prime}(x)=e^{\wedge} x(\cos (x)-\sin (x))$
d) $f^{\prime}(x)=e^{\wedge} x(\cos (x)-\cos (x))$

Solution: Using the product rule, we get $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{e}^{\wedge} \mathrm{x} \cos (\mathrm{x})-\mathrm{e}^{\wedge} \mathrm{x} \sin (\mathrm{x})=\mathrm{e}^{\wedge} \mathrm{x}(\cos (\mathrm{x})-\sin (\mathrm{x}))$. Therefore, the correct answer is option (c).

What is the derivative of $f(x)=\ln (5 x)$?
a) $f^{\prime}(x)=1 /(5 x)$
b) $\mathrm{f}^{\prime}(\mathrm{x})=5 \ln (\mathrm{x})$
c) $\mathrm{f}^{\prime}(\mathrm{x})=5 /(\ln (\mathrm{x}))$
d) $f^{\prime}(x)=1 / x$

Solution: Using the chain rule, we get $\mathrm{f}^{\prime}(\mathrm{x})=1 /(5 \mathrm{x})$. Therefore, the correct answer is option (a).

What is the derivative of $f(x)=x^{\wedge} 2 \ln (x)$?
a) $f^{\prime}(x)=2 x \ln (x)+x$
b) $f^{\prime}(x)=x \ln (x)$
c) $f^{\prime}(x)=2 x \ln (x)+2 x$
d) $f^{\prime}(x)=2 x \ln (x)+x^{\wedge} 2$

Solution: Using (a)

Lec 17 - Derivatives of Trigonometric Function

What is the derivative of the sine function?
a. cosine function
b. tangent function
c. cosecant function
d. secant function

Answer: a. cosine function

What is the derivative of the cosine function?

a. sine function
b. tangent function
c. cosecant function
d. negative sine function

Answer: d. negative sine function

What is the derivative of the tangent function?
a. cosine function
b. cosecant function
c. square of the secant function
d. negative square of the cosecant function

Answer: c. square of the secant function

What is the derivative of the cotangent function?
a. sine function
b. cosine function
c. negative square of the cosecant function
d. negative square of the secant function

Answer: c . negative square of the cosecant function

What is the derivative of the secant function?

a. cosecant function
b. tangent function
c. product of the secant and tangent functions
d. negative product of the secant and tangent functions

Answer: c. product of the secant and tangent functions

What is the derivative of the cosecant function?
a. secant function
b. cotangent function
c. negative product of the cosecant and cotangent functions
d. product of the cosecant and cotangent functions

Answer: c. negative product of the cosecant and cotangent functions

What is the derivative of $\sin (x)+\cos (x)$?
a. $\cos (x)-\sin (x)$
b. $\sin (x)+\cos (x)$
c. $\sin (x)-\cos (x)$
d. $\cos (x)+\sin (x)$

Answer: $\mathrm{a} \cdot \cos (\mathrm{x})-\sin (\mathrm{x})$

What is the derivative of $\tan (x) * \sec (x)$?
a. $\sec ^{\wedge} 2(x)$
b. $\sec (x) * \tan (x)$
c. $\sec (x)+\tan (x)$
d. $\tan ^{\wedge} 2(x)$

Answer: b. $\sec (\mathrm{x}) * \tan (\mathrm{x})$

What is the derivative of $\cos (2 x)$?
a. $-2 \sin (2 x)$
b. $-\sin (2 x)$
c. $2 \sin (2 \mathrm{x})$
d. $-2 \cos (2 x)$

Answer: d. $-2 \sin (2 \mathrm{x})$

What is the derivative of $\arcsin (x)$?
a. $1 / \operatorname{sqrt}\left(1-x^{\wedge} 2\right)$
b. $-1 / \operatorname{sqrt}\left(1-x^{\wedge} 2\right)$
c. $1 /\left(1-x^{\wedge} 2\right)$
d. $-1 /\left(1-x^{\wedge} 2\right)$

Answer: a. 1/sqrt(1-x^2)

Lec 18 - The chain Rule

What is the chain rule used for in calculus?
A) Integration
B) Derivatives
C) Limits
D) Sequences

Solution: B

Which of the following functions cannot be differentiated using the chain rule?
A) $f(x)=\sin \left(x^{\wedge} 2\right)$
B) $f(x)=e^{\wedge} x+\ln (x)$
C) $f(x)=\cos (3 x)$
D) $f(x)=x^{\wedge} 2+x+1$

Solution: D

What is the derivative of $f(x)=\sin (2 x)$ using the chain rule?
A) $2 \cos (2 x)$
B) $2 \sin (2 x)$
C) $4 \cos (2 x)$
D) $4 \sin (2 x)$

Solution: B

What is the derivative of $f(x)=e^{\wedge}(3 x+2)$ using the chain rule?
A) $3 e^{\wedge}(3 x+2)$
B) $\mathrm{e}^{\wedge}(3 \mathrm{x}+2)$
C) $3 e^{\wedge}(3 x)$
D) $2 e^{\wedge}(3 x+2)$

Solution: A

What is the chain rule formula?
A) $f^{\prime}(x)=\lim (h->0)(f(x+h)-f(x)) / h$
B) $f(x)=? g^{\prime}(x) d x$
C) $(f(g(x)))^{\prime}=f^{\prime}(x) g^{\prime}(x)$
D) $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$

Solution: D

What is an example of a composite function?
A) $f(x)=x^{\wedge} 2$
B) $f(x)=3 x+4$
C) $f(x)=\sin (x)$
D) $f(x)=\sin \left(x^{\wedge} 2\right)$

Solution: D

Which of the following is the correct order for applying the chain rule?
A) Differentiate the inner function, then the outer function
B) Differentiate the outer function, then the inner function
C) Multiply the inner and outer functions, then differentiate
D) There is no specific order

Solution: B

What is the derivative of $f(x)=\ln (\cos (x))$ using the chain rule?
A) $-\tan (x)$
B) $-\cot (x)$
C) $-\sec (x)$
D) $-\csc (x)$

Solution: $-\tan (\mathrm{x})$

Can the chain rule be applied to a function composed of more than two functions?
A) Yes
B) No

Solution: A

Which of the following is a way to remember the chain rule?
A) Outside inside
B) Inside outside
C) Middle first
D) There is no way to remember it

Solution: A

Lec 19 - Implicit Differentiation

What is the formula for finding the derivative of an implicit function?
A. $d y / d x=f^{\prime}(x)$
B. $d x / d y=f^{\prime}(y)$
C. $d y / d x=-f^{\prime}(x) / f^{\prime}(y)$
D. $d x / d y=-f^{\prime}(y) / f^{\prime}(x)$

Answer: C

What is the first step in implicit differentiation?
A. Solve for x
B. Solve for y
C. Differentiate both sides with respect to x
D. Differentiate both sides with respect to y

Answer: C

What is the derivative of $y^{\wedge} \mathbf{2}$ with respect to x using implicit differentiation?
A. 2 y
B. $2 x y$
C. 2 yx
D. 0

Answer: C

What is the derivative of $\mathbf{x}^{\wedge} \mathbf{2}+y^{\wedge} \mathbf{2}=\mathbf{2 5}$ with respect to \mathbf{x} using implicit differentiation?
A. $d y / d x=-x / y$
B. $d y / d x=-y / x$
C. $d y / d x=x / y$
D. $d y / d x=y / x$

Answer: A

What is the second derivative of $y^{\wedge} 2=x^{\wedge} 3$ using implicit differentiation?
A. $d^{\wedge} 2 y / d x^{\wedge} 2=-2 x / y$
B. $d^{\wedge} 2 y / d x^{\wedge} 2=-y / 2 x$
C. $\mathrm{d}^{\wedge} 2 \mathrm{y} / \mathrm{dx}^{\wedge} \wedge=2 \mathrm{x} / \mathrm{y}$
D. $d^{\wedge} 2 y / d x^{\wedge} 2=y / 2 x$

Answer: B

What is the derivative of $\sin \left(x^{\wedge} 2+y^{\wedge} 2\right)$ using implicit differentiation?
A. $\cos \left(x^{\wedge} 2+y^{\wedge} 2\right)$
B. $2 x \cos \left(x^{\wedge} 2+y^{\wedge} 2\right)$
C. $2 \mathrm{y} \cos \left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right)$
D. $2(\mathrm{x}+\mathrm{y}) \cos \left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right)$

Answer: D

What is the derivative of $y^{\wedge}(1 / 2)$ using implicit differentiation?
A. $(1 / 2) y^{\wedge}(-1 / 2)$
B. $(1 / 2) y^{\wedge}(1 / 2)$
C. $(1 / 2) y^{\wedge}(3 / 2)$
D. $(1 / 2) y^{\wedge}(2)$

Answer: A

What is the derivative of $x^{\wedge} 2 y^{\wedge} 3+x y=6$ using implicit differentiation?
A. $d y / d x=-2 x / 3 y$
B. $d y / d x=-3 y / 2 x$
C. $d y / d x=-2 y / 3 x$
D. $d y / d x=-3 x / 2 y$

Answer: C

What is the equation of the tangent line to $x^{\wedge} 2+y^{\wedge} 2=16$ at the point (3 , -sqrt(7)) using implicit differentiation?
A. $\mathrm{y}=2 \mathrm{x}-\operatorname{sqrt}(7)$
B. $y=2 x+\operatorname{sqrt}(7)$
C. $y=-2 x-\operatorname{sqrt}(7)$
D. $y=-2 x+\operatorname{sqrt}(7)$

Answer: D

What is the derivative of $\ln (\mathbf{x y})$ using implicit differentiation?
A. $(1 / x)+(1 / y)$
B. $\left(y / x^{\wedge} 2\right)+\left(x / y^{\wedge} 2\right)$
C. $(1 / y)+\left(x / y^{\wedge} 2\right)$
D. $(1 / x)+\left(y / x^{\wedge} 2\right)$

Answer: C

Lec 20 - Derivative of Logarithmic and Exponential Functions

What is the derivative of $\ln (x)$?
a) x
b) $1 / x$
c) $\ln (x)$
d) 0

Solution: b) $1 / x$

What is the derivative of $\mathrm{e}^{\wedge} \mathrm{x}$?
a) x
b) $e^{\wedge} x$
c) $\ln (x)$
d) 0

Solution: b) $e^{\wedge} x$

What is the derivative of $\ln (u)$, where u is a function of x ?
a) $1 / \mathrm{u}$
b) $\mathrm{u} / \ln (\mathrm{u})$
c) $u^{\prime} / \ln (u)$
d) $\ln (u) / u^{\prime}$

Solution: c) u'/u

What is the derivative of $\mathrm{e}^{\wedge} \mathbf{u}$, where u is a function of x ?
a) $e^{\wedge} u$
b) $u^{\prime} e^{\wedge} u$
c) $e^{\wedge}(u / x)$
d) $e^{\wedge}\left(u^{\wedge} 2\right)$

Solution: b) u'e^u

What is the derivative of $\ln (\mathbf{a x})$, where a is a constant?
a) $1 / x \ln (a)$
b) a / x
c) $x \ln (a)$
d) 0

Solution: a) $1 / x \ln (a)$

What is the derivative of $\mathrm{e}^{\wedge}(\mathbf{a x})$, where a is a constant?
a) $\mathrm{ae}^{\wedge} \mathrm{x}$
b) $e^{\wedge}(a x)$
c) $x^{\wedge} a$
d) $a^{\wedge} x$

Solution: a) $\mathrm{ae}^{\wedge}(\mathrm{ax})$

What is the derivative of $\ln \left(x^{\wedge} \mathbf{n}\right)$, where \mathbf{n} is a constant?
a) $\ln (x)$
b) n / x
c) x / n
d) 0

Solution: b) n / x

What is the derivative of $\mathrm{e}^{\wedge}(\mathrm{nx})$, where n is a constant?
a) $e^{\wedge}(n x)$
b) $n^{\wedge} x$
c) $n e^{\wedge}(n x)$
d) $e^{\wedge}\left(n^{\wedge} x\right)$

Solution: c) $n e^{\wedge}(\mathrm{nx})$

What is the derivative of $\ln \left(\mathrm{e}^{\wedge} \mathrm{x}\right)$?
a) x
b) 1
c) $e^{\wedge} x$
d) $\ln (x)$

Solution: b) 1

What is the derivative of $\mathrm{e}^{\wedge}(\ln (\mathrm{x}))$?
a) x
b) $e^{\wedge} x$
c) $\ln (x)$
d) 1

Solution: a) x

Lec 21 - Applications of Differentiation

What does the first derivative of a function represent?
a) The slope of the tangent line
b) The curvature of the function
c) The area under the curve
d) None of the above

Answer: a) The slope of the tangent line

What is the fundamental theorem of calculus?

a) Differentiation and integration are inverse operations.
b) The derivative of an integral function is equal to the original function.
c) The area under a curve can be found by integrating the function.
d) All of the above

Answer: d) All of the above

How is differentiation used in optimization problems?
a) To find the maximum or minimum value of a function
b) To find the area under a curve
c) To find the derivative of a function
d) None of the above

Answer: a) To find the maximum or minimum value of a function

What is the second derivative of a function?

a) The slope of the tangent line
b) The curvature of the function
c) The area under the curve
d) None of the above

Answer: b) The curvature of the function

What is the method of Lagrange multipliers used for?

a) To solve optimization problems with constraints
b) To find the derivative of a function
c) To find the area under a curve
d) None of the above

Answer: a) To solve optimization problems with constraints

How is differentiation used in physics?

a) To find the area under a curve
b) To find the maximum or minimum value of a function
c) To study motion and velocity
d) None of the above

Answer: c) To study motion and velocity

What is the complex derivative?

a) The derivative of a complex function
b) The derivative of a real function
c) The area under a complex curve
d) None of the above

Answer: a) The derivative of a complex function

What is the indefinite integral?

a) The derivative of an integral function
b) The integral of a derivative function
c) The area under a curve
d) None of the above

Answer: b) The integral of a derivative function

How is differentiation used in economics?
a) To study supply and demand curves
b) To maximize profits
c) To study the rate of change of a variable
d) All of the above

Answer: d) All of the above

What is the derivative of a constant?
a) Zero
b) One
c) The constant itself
d) None of the above

Answer: a) Zero

Lec 22 - Relative Extrema

What is a relative extremum?

A. A point where the function is undefined.
B. A point where the function has a vertical tangent.
C. A local maximum or minimum value of a function within a given interval.
D. A point where the function has a horizontal tangent.

Answer: C. A local maximum or minimum value of a function within a given interval.

How do you find relative extrema?

A. Take the limit of the function as x approaches infinity.
B. Take the limit of the function as x approaches negative infinity.
C. Take the derivative of the function and find the critical points.
D. Take the integral of the function.

Answer: C. Take the derivative of the function and find the critical points.

What is a critical point in calculus?

A. A point where the function is undefined.
B. A point where the function has a vertical tangent.
C. A point where the derivative of the function is zero or undefined.
D. A point where the function has a horizontal tangent.

Answer: C. A point where the derivative of the function is zero or undefined.

What is the second derivative test?

A. A method used to determine whether a critical point corresponds to a relative maximum, relative minimum, or neither.
B. A method used to find the derivative of the function.
C. A method used to find the antiderivative of the function.
D. A method used to find the limit of the function as x approaches infinity.

Answer: A. A method used to determine whether a critical point corresponds to a relative maximum, relative minimum, or neither.

What is a relative maximum?

A. The highest point of a function within a given interval.
B. The lowest point of a function within a given interval.
C. A point where the function is undefined.
D. A point where the function has a vertical tangent.

Answer: A. The highest point of a function within a given interval.

What is a relative minimum?

A. The highest point of a function within a given interval.
B. The lowest point of a function within a given interval.
C. A point where the function is undefined.
D. A point where the function has a vertical tangent.

Answer: B. The lowest point of a function within a given interval.

Can a function have multiple relative extrema?

A. Yes, a function can have multiple relative extrema.
B. No, a function can only have one relative extremum.
C. It depends on the type of function.
D. It depends on the interval.

Answer: A. Yes, a function can have multiple relative extrema.

What is the second derivative of a function?

A. The derivative of its antiderivative.
B. The integral of its derivative.
C. The derivative of its first derivative.
D. The integral of its second derivative.

Answer: C. The derivative of its first derivative.

What is a point of inflection?

A. A point where the function is undefined.
B. A point where the function has a vertical tangent.
C. A point where the function changes concavity.
D. A point where the function has a horizontal tangent.

Answer: C. A point where the function changes concavity.

What is the critical number of a function?

A. The highest point of the function.
B. The lowest point of the function.
C. The point where the function is undefined.
D. The value of x that makes the derivative zero or undefined.

Answer: D . The value of x that makes the derivative zero or undefined.

Lec 23 - Maximum and Minimum Values of Functions

Which of the following is true about the maximum or minimum value of a function?
A) It always occurs at a critical point of the function
B) It always occurs at the endpoints of the interval
C) It can occur at either a critical point or an endpoint of the interval
D) It can occur anywhere on the function

Answer: C) It can occur at either a critical point or an endpoint of the interval

How can we determine whether a critical point corresponds to a maximum or minimum value of a function?
A) By evaluating the function at the critical point
B) By taking the derivative of the function at the critical point
C) By taking the second derivative of the function at the critical point
D) By using the intermediate value theorem

Answer: C) By taking the second derivative of the function at the critical point

What is the absolute maximum of a function?
A) The highest point of the function over its entire domain
B) The highest point of the function within a given interval
C) The lowest point of the function over its entire domain
D) The lowest point of the function within a given interval

Answer: A) The highest point of the function over its entire domain

What is the absolute minimum of a function?

A) The highest point of the function over its entire domain
B) The highest point of the function within a given interval
C) The lowest point of the function over its entire domain
D) The lowest point of the function within a given interval

Answer: C) The lowest point of the function over its entire domain

What is an inflection point of a function?

A) A point where the derivative of the function is zero
B) A point where the second derivative of the function is zero
C) A point where the function changes concavity
D) A point where the function changes direction

Answer: C) A point where the function changes concavity

Which of the following is not a step in solving an optimization problem?
A) Taking the derivative of the function
B) Setting the derivative equal to zero or undefined
C) Checking the endpoints of the interval
D) Evaluating the function at the critical points

Answer: D) Evaluating the function at the critical points

What is a constraint in an optimization problem?
A) A condition that must be satisfied by the function
B) A condition that must be satisfied by the derivative of the function
C) A condition that must be satisfied by the second derivative of the function
D) A condition that must be satisfied by the endpoints of the interval

Answer: A) A condition that must be satisfied by the function

Which of the following is not true about the maximum or minimum value of a function over a closed interval?
A) It may occur at the endpoints of the interval
B) It may occur at the critical points of the function
C) It may occur at points where the derivative is undefined
D) It may occur at points where the function is not continuous

Answer: D) It may occur at points where the function is not continuous

What is the first derivative test used for?

A) To determine whether a critical point corresponds to a maximum or minimum of a function
B) To determine whether a function is increasing or decreasing
C) To determine whether a function is concave up or concave down
D) To determine whether a function has an inflection point

Answer: B) To determine whether a function is increasing or decreasing

Which of the following is true about the second derivative test?
A) It is used to determine whether a function is increasing or decreasing
B) It is used to

Lec 24 - Newton's Method, Rolle's Theorem and Mean Value Theorem

What is Newton's Method?
a) A numerical method to find the area under a curve
b) A numerical method to find the roots of a function
c) A method to find the maximum value of a function
d) A method to find the derivative of a function

Answer: b) A numerical method to find the roots of a function

How many endpoints does an interval have?
a) One
b) Two
c) Three
d) Four

Answer: b) Two

What is the significance of Rolle's Theorem?

a) It is used to find the area under a curve
b) It is used to find the maximum or minimum value of a function
c) It is used to find the roots of a function
d) It is used to prove the existence of a point where the derivative of a function is zero

Answer: d) It is used to prove the existence of a point where the derivative of a function is zero

What is the Mean Value Theorem?

a) A theorem that states that the derivative of a function is equal to the average rate of change of the function over an interval
b) A theorem that states that the integral of a function is equal to the average value of the function over an interval
c) A theorem that states that the maximum or minimum value of a function occurs at a point where the derivative of the function is zero
d) A theorem that states that the area under a curve is equal to the antiderivative of the function

Answer: a) A theorem that states that the derivative of a function is equal to the average rate of change of the function over an interval

Which theorem is an extension of Rolle's Theorem?

a) Mean Value Theorem
b) Intermediate Value Theorem
c) Fundamental Theorem of Calculus
d) Power Rule

Answer: a) Mean Value Theorem

What is the relationship between Newton's Method and the roots of a function?
a) Newton's Method is used to find the maximum value of a function
b) Newton's Method is used to find the minimum value of a function
c) Newton's Method is used to find the roots of a function
d) Newton's Method is used to find the slope of a tangent line to a function

Answer: c) Newton's Method is used to find the roots of a function

What is the formula for the Mean Value Theorem?

a) $f(b)-f(a)=(b-a) f^{\prime}(c)$
b) $f(b)-f(a)=(b-a) f(c)$
c) $f^{\prime}(b)-f^{\prime}(a)=(b-a) f(c)$
d) $f^{\prime}(b)-f^{\prime}(a)=(b-a) f^{\prime \prime}(c)$

Answer: $a) f(b)-f(a)=(b-a) f^{\prime}(c)$

How can Rolle's Theorem be used to find the maximum or minimum value of a function?
a) By finding the value of c where the derivative of the function is zero
b) By finding the value of c where the derivative of the function is undefined
c) By finding the value of c where the function is zero
d) By finding the value of c where the function is undefined

Answer: a) By finding the value of c where the derivative of the function is zero

What is the interval in the Mean Value Theorem?

a) The difference between the maximum and minimum values of a function
b) The difference between the endpoints of an interval
c) The slope of the tangent line to a function
d) The antiderivative of a

Lec 25 - Integrations

What is integration?

a. The process of finding the derivative of a function.
b. The process of finding the limit of a function.
c. The process of finding the area under a curve between two points.
d. The process of finding the slope of a tangent line.

Solution: c. The process of finding the area under a curve between two points is called integration.

What is the difference between a definite and indefinite integral?

a. A definite integral gives a function whose derivative is the original function.
b. A definite integral gives a specific numerical value for the area under a curve between two points.
c. A definite integral gives the slope of a tangent line to a curve at a specific point.
d. A definite integral gives the limit of a function as x approaches a specific value.

Solution: b. A definite integral gives a specific numerical value for the area under a curve between two points, while an indefinite integral gives a function whose derivative is the original function.

What is the method of cylindrical shells?

a. A method for finding the area between two curves.
b. A method for finding the arc length of a curve.
c. A method for finding the volume of a solid formed by revolving a curve around an axis.
d. A method for finding the limit of a function.

Solution: c. The method of cylindrical shells is a method for finding the volume of a solid formed by revolving a curve around an axis.

What is an antiderivative?

a. A function whose derivative is the original function.
b. A function whose limit is the original function.
c. A function whose slope is the original function.
d. A function whose area under the curve is the original function.

Solution: a. An antiderivative is a function whose derivative is the original function.

What is the constant of integration?

a. A value that is added to the antiderivative of a function.
b. A value that is subtracted from the antiderivative of a function.
c. A value that is multiplied by the antiderivative of a function.
d. A value that is divided by the antiderivative of a function.

Solution: a. The constant of integration is a value that is added to the antiderivative of a function.

How are integrals used in physics?

a. To find the area between two curves.
b. To find the volume of a solid formed by revolving a curve around an axis.
c. To find the work done by a force.
d. To find the arc length of a curve.

Solution: c. Integrals are used in physics to find the work done by a force.

How is the area between two curves found?

a. By finding the derivative of one curve.
b. By finding the derivative of both curves.
c. By integrating the difference between the two curves.
d. By integrating the sum of the two curves.

Solution: c . The area between two curves is found by integrating the difference between the two curves.

How is the arc length of a curve found?

a. By integrating the length of small segments of the curve.
b. By differentiating the length of small segments of the curve.
c. By finding the area under the curve.
d. By finding the volume of a solid formed by revolving the curve around an axis.

Solution: a. The arc length of a curve is found by integrating the length of small segments of the curve.

What is the relationship between integration and differentiation?
a. Integration and differentiation are unrelated.
b. Integration is the inverse of differentiation.
c. Integration is the same as differentiation.
d. Integration is the

Lec 26 - Integration by Substitution

What is the main goal of integration by substitution?
A) To simplify complex integrals
B) To differentiate functions
C) To solve differential equations
D) To find limits of functions

Answer: A

What is the general formula for integration by substitution?
A) $? f(x) d x=F(x)+C$
B) $? f(g(x)) g^{\prime}(x) d x=? f(u) d u$
C) $? f^{\prime}(x) d x=f(x)+C$
D) $e^{\wedge} x d x=e^{\wedge} x+C$

Answer: B

What should be substituted in the integral $?^{\wedge} \mathrm{x}^{\wedge} \mathrm{e}^{\wedge}\left(\mathrm{x}^{\wedge} 3\right)$ dx using integration by substitution?
A) x
B) $e^{\wedge}\left(x^{\wedge} 3\right)$
C) $x^{\wedge} 3$
D) $1 / x$

Answer: C

How do you evaluate the integral after making the substitution?
A) Apply the chain rule
B) Use trigonometric identities
C) Use integration by parts
D) Use standard integration rules

Answer: D

What is the derivative of the function $u=\sin (x)$?
A) $\cos (x)$
B) $\sin (x)$
C) $-\cos (x)$
D) $-\sin (x)$

Answer: A

What is the substitution used for the integral $\mathbf{~} \mathrm{x} /\left(\mathrm{x}^{\wedge} 2+1\right) \mathrm{dx}$?
A) $u=x^{\wedge} 2$
B) $u=x^{\wedge} 2+1$
C) $u=x^{\wedge} 3$
D) $u=x /\left(x^{\wedge} 2+1\right)$

Answer: D

Can you use integration by substitution to evaluate definite integrals?
A) Yes
B) No

Answer: A

What is the importance of adjusting the limits of integration when using integration by substitution?
A) To simplify the integral
B) To make the integral more complex
C) To ensure that we are integrating over the same range in terms of the new variable
D) To evaluate the integral faster

Answer: C

What is the substitution used for the integral $\mathbf{e}^{\wedge}(2 x+1) d x ?$
A) $u=2 x$
B) $u=2 x+1$
C) $u=e^{\wedge}(2 x+1)$
D) $u=e^{\wedge}(2 x)$

Answer: B

Can you use integration by substitution for all integrals?
A) Yes
B) No

Answer: B

Lec 27 - Sigma Notation

What is the symbol used to represent a sum in sigma notation?
A) ?
B) ?
C) ?
D) ?

Solution: B) ?

What is the purpose of using sigma notation?
A) To represent long sums of numbers in a more compact and convenient way
B) To represent long products of numbers in a more compact and convenient way
C) To represent long division of numbers in a more compact and convenient way
D) To represent long subtraction of numbers in a more compact and convenient way

Solution: A) To represent long sums of numbers in a more compact and convenient way

How is an arithmetic sequence represented in sigma notation?
A) $? \mathrm{i}=1 \mathrm{n} \mathrm{ar}{ }^{\wedge} \mathrm{i}$
B) $? \mathrm{i}=\ln (\mathrm{a}+(\mathrm{i}-1) \mathrm{d})$
C) $? \mathrm{i}=0 \mathrm{nar}{ }^{\wedge} \mathrm{i}$
D) $? \mathrm{i}=0 \mathrm{n}(\mathrm{a}+(\mathrm{i}-1) \mathrm{d})$

Solution: B) $? \mathrm{i}=\ln (\mathrm{a}+(\mathrm{i}-1) \mathrm{d})$

How is a geometric sequence represented in sigma notation?
A) $? \mathrm{i}=1 \mathrm{n} \mathrm{ar}{ }^{\wedge} \mathrm{i}$
B) $? \mathrm{i}=\ln (\mathrm{a}+(\mathrm{i}-1) \mathrm{d})$
C) $? \mathrm{i}=0 \mathrm{nar}{ }^{\wedge} \mathrm{i}$
D) $? \mathrm{i}=0 \mathrm{n}(\mathrm{a}+(\mathrm{i}-1) \mathrm{d})$

Solution: C) ? $\mathrm{i}=0 \mathrm{n}$ ar ${ }^{\wedge} \mathrm{i}$

Can sigma notation be used to represent infinite series?
A) Yes
B) No

Solution: A) Yes

What is the formula for the sum of the first ' n " terms of an arithmetic sequence?
A) $\mathrm{Sn}=\mathrm{n} / 2(\mathrm{a}+\mathrm{l})$
B) $\mathrm{Sn}=\mathrm{n}(\mathrm{a}+1) / 2$
C) $\mathrm{Sn}=\mathrm{n}(\mathrm{a}+\mathrm{l})$
D) $\mathrm{Sn}=(\mathrm{a}+1) / \mathrm{n}$

Solution: B) $\mathrm{Sn}=\mathrm{n}(\mathrm{a}+\mathrm{l}) / 2$

What is the formula for the sum of the first " n " terms of a geometric sequence?
A) $\mathrm{Sn}=\mathrm{n} / 2(\mathrm{a}+1)$
B) $\mathrm{Sn}=\mathrm{n}(\mathrm{a}+1) / 2$
C) $\mathrm{Sn}=\mathrm{a}\left(1-\mathrm{r}^{\wedge} \mathrm{n}\right) /(1-\mathrm{r})$
D) $\mathrm{Sn}=\mathrm{a}\left(1+\mathrm{r}^{\wedge} \mathrm{n}\right) /(1+\mathrm{r})$

Solution: C) $\mathrm{Sn}=\mathrm{a}\left(1-\mathrm{r}^{\wedge} \mathrm{n}\right) /(1-r)$

Which test can be used to determine the convergence or divergence of an infinite series?
A) The limit comparison test
B) The integral test
C) The root test
D) All of the above

Solution: D) All of the above

What is the difference between an arithmetic sequence and a geometric sequence?
A) In an arithmetic sequence, each term is the sum of the previous term and a constant; in a geometric sequence, each term is the product of the previous term and a constant.
B) In an arithmetic sequence, each term is the product of the previous term and a constant; in a geometric sequence, each term is the sum of the previous term and a constant.
C) In an arithmetic sequence, each term is the product of the previous term and a constant; in a geometric sequence, each term is the difference of the previous term and a constant.
D) In an arithmetic sequence, each term is the difference of the previous term and a constant; in a geometric sequence, each term is the sum of the previous term and a constant.

Solution: A) In an arithmetic sequence, each term is the sum of the previous term and a constant; in a geometric sequence, each

Lec 28 - Area as Limit

What is the formula for finding the area of a shape using the concept of limits?
A. A = length x width
B. $A=\lim _{-}\{n \backslash t o l i n f t y\} \backslash s u m_{-}\{i=1\}^{\wedge} n f\left(x _i\right) \backslash$ Delta x
C. $\mathrm{A}=($ base x height) $/ 2$
D. $\mathrm{A}=\mathrm{pi} \mathrm{x}$ radius $\wedge 2$

Answer: B

What is the relationship between the width of the rectangles and the accuracy of the approximation?
A. The wider the rectangles, the more accurate the approximation
B. The narrower the rectangles, the more accurate the approximation
C. The width of the rectangles has no effect on the accuracy of the approximation
D. The accuracy of the approximation is determined by the shape of the curve

Answer: B

How does the concept of area as a limit help to approximate the area under a curve?
A. By dividing the shape into smaller and smaller circles
B. By dividing the shape into smaller and smaller rectangles
C. By dividing the shape into smaller and smaller triangles
D. By using the Pythagorean theorem to find the area of the shape

Answer: B

What is the practical application of the concept of area as a limit in physics?
A. To find the area of a rectangle
B. To find the area of a circle
C. To find the displacement of an object
D. To find the volume of a sphere

Answer: C

What is the significance of the concept of area as a limit in calculus and analytical geometry?

A. It allows us to find the volume of a sphere
B. It allows us to find the circumference of a circle
C. It allows us to find the area under curves and more complex shapes
D. It allows us to find the slope of a curve at a given point

Answer: C

How can the concept of area as a limit be applied to more complex shapes?
A. By dividing the shape into smaller and smaller rectangles
B. By dividing the shape into smaller and smaller circles
C. By dividing the shape into smaller and smaller triangles
D. By using the Pythagorean theorem to find the area of the shape

Answer: C

What is the formula for finding the area of a triangle?

A. $\mathrm{A}=$ length x width
B. $\mathrm{A}=($ base x height $) / 2$
C. $\mathrm{A}=\mathrm{pi} \mathrm{x} \operatorname{radius}^{\wedge} 2$
D. $A=\lim _{-}\{n \backslash t o l i n f t y\} \backslash s u m_{-}\{i=1\}^{\wedge} n f\left(x _i\right) \backslash$ Delta x

Answer: B

How does the limit of the sum of the areas of triangles help to approximate the area of a complex shape?
A. By dividing the shape into smaller and smaller triangles
B. By dividing the shape into smaller and smaller rectangles
C. By dividing the shape into smaller and smaller circles
D. By using the Pythagorean theorem to find the area of the shape

Answer: A

What are some real-world applications of the concept of area as a limit?

A. Solving problems involving irregular shapes and curves in physics
B. Calculating the circumference of a circle in engineering
C. Finding the area of a rectangle in economics
D. Determining the volume of a cylinder in mathematics

Answer: A

What is the mathematical formula for finding the area of a circle?
A. $\mathrm{A}=$ length x width
B. $\mathrm{A}=($ base x height $) / 2$
C. $A=$ pi x radius $^{\wedge} 2$
D. $A=\lim _{-}\{$n\tolinfty $\} \backslash$ sum $_\{i=1\}^{\wedge} n f\left(x _i\right) \backslash$ Delta x

Lec 29 - Definite Integral

What is the definition of a definite integral?
A. A limit of a Riemann sum
B. An antiderivative of a function
C. A sum of infinitely small rectangles
D. A limit of a derivative

Answer: A

What does the definite integral represent?
A. The rate of change of a function
B. The area under a curve between two points
C. The slope of a tangent line
D. The limit of a function

Answer: B

What is the notation used for the definite integral?
A. $? f(x) d x$
B. $\mathrm{f}^{\prime}(\mathrm{x})$
C. $\lim x ? a f(x)$
D. $? \mathrm{f}(\mathrm{x})$

Answer: A

What is the fundamental theorem of calculus?
A. The limit of a Riemann sum
B. The derivative of a function
C. The area under a curve
D. The relationship between derivatives and integrals

Answer: D

What is the formula for the definite integral of a function $f(x)$ between a and b ?

A. $? a^{\wedge} \mathrm{bf}(\mathrm{x}) \mathrm{dx}=\mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})$
B. ? $a^{\wedge} b f(x) d x=f(a)-f(b)$
C. $? a^{\wedge} b f(x) d x=f(a)+f(b)$
D. $? a^{\wedge} b f(x) d x=2(f(b)-f(a))$

Answer: A

What is the Riemann sum?

A. A numerical method for evaluating the definite integral
B. A method for finding the derivative of a function
C. A method for finding the antiderivative of a function
D. A method for approximating the area under a curve using rectangles

Answer: D

What is numerical integration?

A. A method for finding the derivative of a function
B. A method for finding the antiderivative of a function
C. A method for approximating the area under a curve using rectangles
D. A method for evaluating the definite integral using exact formulas

Answer: C

What is the trapezoidal rule?

A. A method for approximating the area under a curve using trapezoids
B. A method for approximating the area under a curve using rectangles
C. A method for evaluating the definite integral using exact formulas
D. A method for finding the derivative of a function

Answer: A

What are some real-world applications of the definite integral?

A. Calculating the area of a circle
B. Calculating the volume of a sphere
C. Calculating the present value of future cash flows
D. Calculating the velocity of an object

Answer: C

What is the relationship between the derivative and the definite integral?
A. The derivative is the inverse of the definite integral
B. The derivative represents the area under the curve
C. The definite integral represents the rate of change of a function
D. The derivative and definite integral are inverse operations

Answer: D

Lec 30 - First Fundamental Theorem of Calculus

What does the First Fundamental Theorem of Calculus establish?
a. A connection between integration and differentiation
b. A connection between differentiation and limits
c. A connection between limits and series
d. None of the above

Answer: a. A connection between integration and differentiation

What is the formula for the First Fundamental Theorem of Calculus?

a. $?^{\wedge}{ }^{\wedge} b f(x) d x=F(b)-F(a)$
b. $F(x)=? a^{\wedge} x f(t) d t$
c. $F(x)=f(x)$
d. None of the above

Answer: b. $F(x)=? a^{\wedge} x f(t) d t$

What is the significance of the First Fundamental Theorem of Calculus?

a. It provides a powerful tool for solving problems that involve finding the area under a curve
b. It allows us to calculate the derivative of the definite integral of a function
c. It enables us to find the slope of a tangent line to a curve at any point
d. All of the above

Answer: d. All of the above

What is the relationship between the derivative of the definite integral and the original function?
a. They are equal
b. They are opposite in sign
c. They are proportional
d. None of the above

Answer: a. They are equal

What is the condition for the First Fundamental Theorem of Calculus to hold?

a. The function must be continuous on the interval [a, b]
b. The function must be differentiable on the interval [a, b]
c. The function must be both continuous and differentiable on the interval [a, b]
d. None of the above

Answer: a . The function must be continuous on the interval [a, b]

What is the role of the limit concept in the proof of the First Fundamental Theorem of Calculus?
a. To define the definite integral
b. To show that the Riemann sum approaches the definite integral as the number of subintervals increases
c. To calculate the derivative of the definite integral
d. None of the above

Answer: b. To show that the Riemann sum approaches the definite integral as the number of subintervals increases

What is the application of the First Fundamental Theorem of Calculus in physics?

a. To calculate the total distance traveled by an object
b. To calculate the present value of future cash flows
c. To find the maximum or minimum values of a function
d. None of the above

Answer: a. To calculate the total distance traveled by an object

What is the application of the First Fundamental Theorem of Calculus in economics?
a. To calculate the total revenue of a company
b. To calculate the present value of future cash flows
c. To find the marginal cost or revenue of a product
d. None of the above

Answer: b. To calculate the present value of future cash flows

Is the First Fundamental Theorem of Calculus applicable only to continuous functions?

a. Yes
b. No
c. Sometimes
d. It depends on the interval

Answer: a. Yes

What is the difference between the First and Second Fundamental Theorem of Calculus?

a. The First Fundamental Theorem relates integration and differentiation, while the Second Fundamental Theorem relates definite and indefinite integrals
b. The First Fundamental Theorem relates differentiation and limits, while the Second Fundamental Theorem relates integration and series
c. The First Fundamental Theorem relates integration and limits, while the Second Fundamental Theorem relates differentiation and series
d. None of the above

Answer: a

Lec 31 - Evaluating Definite Integral by Subsitution

What is the correct substitution for evaluating the definite integral of $\boldsymbol{?} \cos (x) \sin (x) d x$ from 0 to $\boldsymbol{?} / \mathbf{2}$?
a) $u=\cos (x)$
b) $u=\sin (x)$
c) $u=\cos (x) \sin (x)$
d) $u=?\left(1-\cos ^{\wedge} 2(x)\right)$

Answer: b) $u=\sin (x)$
Explanation: Using the substitution $u=\sin (x)$, we get $d u / d x=\cos (x) d x$. Substituting this into the integral and using the limits of integration, we get $? \cos (\mathrm{x}) \sin (\mathrm{x}) \mathrm{dx}$ from 0 to $? / 2$ is equal to ?u du from 0 to 1 , which evaluates to $1 / 2$.

What is the correct substitution for evaluating the definite integral of $\mathbf{?} \mathrm{x}^{\wedge} 2 \operatorname{sqrt}(\mathrm{x}+1) \mathrm{dx}$ from 0 to 1 ?
a) $u=x+1$
b) $u=x^{\wedge} 2$
c) $u=\operatorname{sqrt}(x+1)$
d) $u=x+1 / 2$

Answer: $a) u=x+1$
Explanation: Using the substitution $u=x+1$, we get $d u / d x=1 d x$. Substituting this into the integral and using the limits of integration, we get ? $x^{\wedge} 2 \operatorname{sqrt}(\mathrm{x}+1)$ dx from 0 to 1 is equal to ? $(\mathrm{u}-1)^{\wedge} 2 \operatorname{sqrt}(\mathrm{u})$ du from 1 to 2 , which can be evaluated using integration by parts.

What is the correct substitution for evaluating the definite integral of $\boldsymbol{?} \sec (\mathbf{x}) \tan (\mathbf{x}) \mathrm{dx}$ from 0 to $\boldsymbol{?} / \mathbf{?}$?
a) $u=\sec (x)$
b) $\mathrm{u}=\tan (\mathrm{x})$
c) $u=\sec (x) \tan (x)$
d) $\mathrm{u}=\sin (\mathrm{x}) / \cos (\mathrm{x})$

Answer: $a) \mathrm{u}=\sec (\mathrm{x})$
Explanation: Using the substitution $u=\sec (x)$, we get $d u / d x=\sec (x) \tan (x) d x$. Substituting this into the integral and using the limits of integration, we get $? \sec (x) \tan (x)$ dx from 0 to ?/4 is equal to ?u du from ?2 to 1 , which evaluates to $\ln (? 2+1)$.

What is the correct substitution for evaluating the definite integral of $\mathbf{? x}^{\wedge} 3 \mathrm{e}^{\wedge}\left(\mathrm{x}^{\wedge} 4+1\right) \mathrm{dx}$ from 0 to 1 ?
a) $u=x^{\wedge} 4+1$
b) $u=e^{\wedge}\left(x^{\wedge} 4+1\right)$
c) $u=x^{\wedge} 3$
d) $u=e^{\wedge} x$

Answer: a) $u=x^{\wedge} 4+1$
Explanation: Using the substitution $u=x^{\wedge} 4+1$, we get du/dx $=4 x^{\wedge} 3 d x$. Substituting this into the integral and using the limits of integration, we get $? x^{\wedge} 3 e^{\wedge}\left(x^{\wedge} 4+1\right)$ dx from 0 to 1 is equal to $(1 / 4) ? e^{\wedge} u$ du from 1 to 2 , which evaluates to $\left(e^{\wedge} 2-e\right) / 4$.

What is the correct substitution for evaluating the definite integral of $\boldsymbol{?}(x+1) \cos \left(x^{\wedge} 2+2 x+1\right)$ dx from 0 to 1 ?
a) $u=x^{\wedge} 2+2 x+1$
b) $u=\cos \left(x^{\wedge} 2+2 x+1\right)$
c) $u=x+1$
d) $u=\sin \left(x^{\wedge} 2+2 x+1\right)$

Answer: a) $u=x^{\wedge} 2+2 x+1$
Explanation: Using the substitution $u=x^{\wedge} 2+2 x+1$, we

Lec 32 - Second Fundamental Theorem of Calculus

What is the Second Fundamental Theorem of Calculus?
A. It states that integration is the reverse of differentiation.
B. It states that differentiation is the reverse of integration.
C. It relates the integral of a function to its antiderivative.

Answer: C

What is the formula for the Second Fundamental Theorem of Calculus?
A. $? \operatorname{baf}^{\prime}(\mathrm{x}) \mathrm{dx}=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$
B. $? \mathrm{abf}(\mathrm{x}) \mathrm{dx}=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$
C. $\operatorname{labf}(\mathrm{x}) \mathrm{dx}=\mathrm{F}(\mathrm{a})-\mathrm{F}(\mathrm{b})$

Answer: A

If $f(x)=\mathbf{2 x} x^{\wedge}$ and $F(x)$ is an antiderivative of $f(x)$, what is the value of $\mathbf{9 2 3} f^{\prime}(x) d x$ using the Second Fundamental Theorem of Calculus?
A. 54
B. 32
C. 16

Answer: C

What is the relationship between the First and Second Fundamental Theorems of Calculus?
A. The Second Fundamental Theorem of Calculus is a generalization of the First Fundamental Theorem of Calculus.
B. The First Fundamental Theorem of Calculus is a generalization of the Second Fundamental Theorem of Calculus.
C. The two theorems are unrelated.

Answer: A

What is the Second Fundamental Theorem of Calculus used for?
A. To find the derivative of a function.
B. To find the integral of a function.
C. To evaluate definite integrals.

Answer: C

If $f(x)=x^{\wedge} \mathbf{2}$ and $F(x)$ is an antiderivative of $f(x)$, what is the value of $\boldsymbol{\operatorname { P 2 }} \mathbf{f}(x) d x$ using the Second Fundamental Theorem of Calculus?
A. 8
B. 12
C. 20

Answer: B

What is the derivative of $? x^{\wedge} 2 \sin (x) d x$ with respect to x ?
A. $x^{\wedge} 2 \sin (x)$
B. $\sin (x)$
C. $2 x \sin (x)-x^{\wedge} 2 \cos (x)$

Answer: C

If $F(x)=? x^{\wedge} 3 \cos (t) d t$, what is $F^{\prime}(x)$?
A. $x^{\wedge} 2 \sin (x)$
B. $\cos (x)$
C. $3 x^{\wedge} 2 \cos (x)$

Answer: C

If $f(x)=1 / x$ and $F(x)$ is an antiderivative of $f(x)$, what is the value of $\mathbf{? 1 1 / 2 f (x) d x}$ using the Second Fundamental Theorem of Calculus?
A. $\ln (2)$
B. $\ln (1 / 2)$
C. $-\ln (2)$

Answer: B

What is the formula for the Second Fundamental Theorem of Calculus in Leibniz notation?
A. $d / d x ? a^{\wedge} x f(t) d t=f(x)$
B. $? a b f^{\prime}(x) d x=f(b)-f(a)$
C. $d / d x ? a^{\wedge} x f^{\prime}(t) d t=f(x)$

Answer: A

Lec 33 - Application of Definite Integral

A cylindrical tank is filled with water to a height of 10 meters. The radius of the tank is $\mathbf{5}$ meters. What is the approximate volume of the water in the tank?
a. $785.4 \mathrm{~m}^{\wedge} 3$
b. $1570.8 \mathrm{~m}^{\wedge} 3$
c. $1963.5 \mathrm{~m}^{\wedge} 3$
d. $3141.6 \mathrm{~m}^{\wedge} 3$

Answer: b. 1570.8 m^3

What is the average value of the function $f(x)=3 x^{\wedge} 2+2 x+1$ on the interval $[0,1]$?
a. 2
b. 3
c. 4
d. 5

Answer: c. 4

The region bounded by $y=x^{\wedge} 2$ and $y=x$ is rotated around the y-axis. What is the volume of the resulting solid?
a. $1 / 6$?
b. $1 / 4$?
c. $1 / 2$?
d. $3 / 4$?

Answer: b. 1/4?

A rectangular tank with a length of 4 meters and a width of 2 meters is being filled with water at a rate of 2 cubic meters per minute. How fast is the water level rising when the depth of the water is 3 meters?
a. $1 / 6 \mathrm{~m} / \mathrm{min}$
b. $1 / 3 \mathrm{~m} / \mathrm{min}$
c. $2 / 3 \mathrm{~m} / \mathrm{min}$
d. $1 \mathrm{~m} / \mathrm{min}$

Answer: c. $2 / 3 \mathrm{~m} / \mathrm{min}$

The region bounded by $y=\sin x, y=0, x=0$, and $x=?$ is rotated around the x-axis. What is the volume of the resulting solid?
a. 2 ?
b. $2 ? / 3$
c. $4 ? / 3$
d. $8 ? / 3$

Answer: b. 2?/3

A wire of length 10 meters is bent into the shape of a rectangle. What is the maximum area of the rectangle?
a. $5 \mathrm{~m}^{\wedge} 2$
b. $10 \mathrm{~m}^{\wedge} 2$
c. $12.5 \mathrm{~m}^{\wedge} 2$
d. $25 \mathrm{~m}^{\wedge} 2$

Answer: c. $12.5 \mathrm{~m}^{\wedge} 2$

The region bounded by $y=x^{\wedge} 3, y=0, x=1$, and $x=2$ is rotated around the x-axis. What is the volume of the resulting solid?
a. $7 / 3$?
b. $8 / 3$?
c. $9 / 2$?
d. $10 / 3$?

Answer: b. 8/3?

A rectangular tank with a length of 6 meters and a width of 4 meters is being filled with water at a rate of 3 cubic meters per minute. How fast is the water level rising when the depth of the water is 2 meters?
a. $1 / 3 \mathrm{~m} / \mathrm{min}$
b. $1 / 2 \mathrm{~m} / \mathrm{min}$
c. $2 / 3 \mathrm{~m} / \mathrm{min}$
d. $1 \mathrm{~m} / \mathrm{min}$

Answer: d. $1 \mathrm{~m} / \mathrm{min}$

The region bounded by $y=x^{\wedge} 2, y=2 x$, and $x=2$ is rotated around the y-axis. What is the volume of the resulting solid?
a. $8 ? / 15$
b. 4 ?/3
c. $8 ? / 3$
d. 16?/15

Answer: a. 8?/15
A particle moves along a straight line such that its position at time

Lec 34 - Volume by slicing; Disks and Washers

What is the formula for finding the volume of a disk using integration?
A. $V=? \mathrm{r}^{\wedge} 2$
B. $\mathrm{V}=? \mathrm{r}^{\wedge} 2 \mathrm{~h}$
C. $\mathrm{V}=? \mathrm{~h}^{\wedge} 2 / 4$
D. $\mathrm{V}=? \mathrm{~h}^{\wedge} 2 / 2$

Answer: B

When finding the volume of a washer using integration, what is the distance between the two radii?
A. The thickness of the washer
B. The diameter of the inner radius
C. The diameter of the outer radius
D. The difference between the two radii

Answer: A

What is the shape of the cross-section when finding the volume of a solid of revolution by slicing perpendicular to the axis of revolution?
A. Rectangle
B. Trapezoid
C. Triangle
D. Disk or washer

Answer: D

In which direction is the solid of revolution sliced when finding its volume using disks and washers?
A. Perpendicular to the axis of revolution
B. Parallel to the axis of revolution
C. Along the axis of revolution
D. Diagonal to the axis of revolution

What is the formula for finding the volume of a solid of revolution using disks?
A. $V=? r^{\wedge} 2$
B. $V=? \mathrm{r}^{\wedge} 2 \mathrm{~h}$
C. $V=?[a, b] f(x)^{\wedge} 2 d x$
D. $V=?[a, b] ? f(x)^{\wedge} 2 d x$

Answer: D

What is the formula for finding the volume of a solid of revolution using washers?
A. $V=? \mathrm{r}^{\wedge} 2$
B. $V=? r^{\wedge} 2 h$
C. $V=?[a, b] f(x)^{\wedge} 2 d x$
D. $V=?[a, b] ?\left(R^{\wedge} 2-r^{\wedge} 2\right) d x$

Answer: D

When finding the volume of a solid of revolution using washers, what does the term " R " represent?
A. The radius of the solid at the outer edge of the washer
B. The radius of the solid at the inner edge of the washer
C. The radius of the washer itself
D. The thickness of the washer

Answer: A

When finding the volume of a solid of revolution using washers, what does the term ' r " represent?
A. The radius of the solid at the outer edge of the washer
B. The radius of the solid at the inner edge of the washer
C. The radius of the washer itself
D. The thickness of the washer

Answer: B

What is the shape of the cross-section when finding the volume of a solid of revolution by slicing parallel to the axis of revolution?
A. Rectangle
B. Trapezoid
C. Triangle
D. Disk or washer

Answer: A

What is the formula for finding the volume of a solid of revolution by slicing parallel to the axis of revolution?
A. $V=? \mathrm{r}^{\wedge} 2$
B. $V=? r^{\wedge} 2 h$
C. $V=?[a, b] f(x) d x$
D. $V=?[a, b] 2 ? x f(x) d x$

Answer: D

Lec 35 - Volume by Cylindrical Shells

What is the formula for finding the volume of a solid using the cylindrical shells method?
a) $\mathrm{V}=2$? rh
b) $V=2 ? \mathrm{rh}+2 ? \mathrm{r}^{\wedge} 2$
c) $V=? r^{\wedge} 2 h$
d) $\mathrm{V}=? \mathrm{r}^{\wedge} 2$

Answer: c) $V=? r^{\wedge} 2 h$

When using the cylindrical shells method, what shape are the "shells" that are added up to find the volume of the solid?
a) Cylinders
b) Rectangles
c) Triangles
d) Spheres

Answer: a) Cylinders

When using the cylindrical shells method, what axis is typically used to form the cylinders?
a) x-axis
b) y-axis
c) z-axis
d) None of the above

Answer: a) x-axis

Which of the following is a necessary step when using the cylindrical shells method to find the volume of a solid?
a) Find the limits of integration
b) Take the derivative of the function
c) Solve for the area under the curve
d) None of the above

When using the cylindrical shells method, what is typically the function used to find the height of the shells?
a) The function that defines the curve rotated about the axis
b) The function that defines the axis of rotation
c) The function that defines the radius of the shell
d) None of the above

Answer: a) The function that defines the curve rotated about the axis

What is the typical range of the radius when using the cylindrical shells method?
a) 0 to the length of the curve
b) 0 to infinity
c) 0 to the height of the curve
d) None of the above

Answer: a) 0 to the length of the curve

When using the cylindrical shells method, what is the typical range of the height of the shells?
a) 0 to the length of the curve
b) 0 to infinity
c) 0 to the height of the curve
d) None of the above

Answer: c) 0 to the height of the curve

What is the formula for finding the volume of a cylindrical shell?
a) $V=2$? rh
b) $\mathrm{V}=2 ? \mathrm{rh}+2 \mathrm{r}^{\wedge}{ }^{\wedge}$
c) $V=? r^{\wedge} 2 h$
d) $\mathrm{V}=? \mathrm{r}^{\wedge} 2$

Answer: c) $V=? r^{\wedge} 2 h$

What is the main advantage of using the cylindrical shells method over other methods for finding volumes?
a) It is easier to set up
b) It is more accurate
c) It works for any solid of revolution
d) None of the above

Answer: c) It works for any solid of revolution

What is the typical shape of the cross-sections of the solid when using the cylindrical shells method?
a) Circles
b) Rectangles
c) Triangles
d) Spheres

Answer: a) Circles

Lec 36 - Length of Plane Curves

Which formula is used to calculate the length of a curve?
a) The area formula
b) The perimeter formula
c) The arc length formula
d) The tangent line formula

Solution: c) The arc length formula is used to calculate the length of a curve.

What is the arc length formula?

a) $L=?[a, b] ?\left(1+(d y / d x)^{2}\right) d x$
b) $L=?[a, b](d y / d x) d x$
c) $\mathrm{L}=?[\mathrm{a}, \mathrm{b}] ?\left(1+(\mathrm{dx} / \mathrm{dy})^{2}\right) \mathrm{dy}$
d) $L=?[a, b](d x / d y) d y$

Solution: a) The arc length formula is $L=?[a, b] ?\left(1+(d y / d x)^{2}\right) d x$.

Which of the following is a smooth curve?
a) A piecewise linear curve
b) A parabolic curve
c) A circle
d) A fractal curve

Solution: b) A parabolic curve is a smooth curve, as it has a continuous and differentiable derivative.

How do we find the length of a circle?
a) $\mathrm{L}=? \mathrm{r}^{2}$
b) $\mathrm{L}=2$? r
c) $L=? d$
d) $L=2$? d

Solution: b) The length of a circle is given by the formula $\mathrm{L}=2$? .

How do we find the length of a straight line segment?

a) $L=x ?-x$?
b) $L=y$? $-y$?
c) $L=?\left((x ?-x ?)^{2}+(y ?-y ?)^{2}\right)$
d) $L=(x ?-x$? $)+(y ?-y$? $)$

Solution: c) The length of a straight line segment is given by the distance formula $\mathrm{L}=?\left((\mathrm{x} \text { ? }-\mathrm{x} \text { ? })^{2}+(\mathrm{y}\right.$? y ? $)^{2}$).

Can we use the arc length formula for non-smooth curves?
a) Yes
b) No

Solution: a) Yes, we can use the arc length formula for non-smooth curves by dividing the curve into small sections and approximating its length using the formula for each section.

What is the length of the x-axis?
a) 0
b) 1
c) -1
d) ?

Solution: a) The length of the x -axis is 0 , as it is a straight line with no width.

What is the length of the unit circle?
a) ?
b) 2 ?
c) 3 ?
d) 4 ?

Solution: b) The length of the unit circle is 2?, as it has a radius of 1 .
a) Using a simple formula
b) Using numerical methods
c) Using the arc length formula
d) Using the Pythagorean theorem

Solution: b) The length of an ellipse cannot be found using a simple formula, but it can be approximated using numerical methods.

Can we use the Pythagorean theorem to find the length of a curve?

a) Yes
b) No

Solution: b) No, the Pythagorean theorem cannot be used to find the length of a curve, as it only applies to right triangles.

Lec 37 - Area of Surface of Revolution

What is the formula for finding the area of a surface of revolution?
A. $A=2 ? ?[a, b] f(x) d x$
B. $A=2 ? ?[a, b] f(x) ?\left(1+(f(x))^{2}\right) d x$
C. $A=? ?[a, b] f(x) d x$
D. $A=? ?[a, b] f(x) ?\left(1+\left(f^{\prime}(x)\right)^{2}\right) d x$

Answer: B

What is the axis of rotation in the context of the surface area of a surface of revolution?
A. The line or axis about which the curve is being rotated to form a three-dimensional shape.
B. The line or axis about which the curve is being translated to form a two-dimensional shape.
C. The line or axis about which the curve is being reflected to form a three-dimensional shape.
D. The line or axis about which the curve is being projected to form a two-dimensional shape.

Answer: A

Can the formula for the surface area of a surface of revolution be used to find the surface area of a sphere?
A. Yes
B. No

Answer: A

In which field of study is the surface area of a surface of revolution commonly used?
A. Biology
B. Chemistry
C. Physics
D. Mathematics

Answer: D

What is the relationship between the surface area of a surface of revolution and calculus?
A. The formula for the surface area of a surface of revolution is derived from calculus.
B. Calculus has no relation to the surface area of a surface of revolution.
C. The formula for the surface area of a surface of revolution is derived from geometry.
D. Calculus and geometry are equally important in the surface area of a surface of revolution.

Answer: A

What is the practical application of the surface area of a surface of revolution in physics?
A. Calculating the surface area of a rocket.
B. Calculating the surface area of a baseball.
C. Calculating the surface area of a sphere.
D. Calculating the surface area of a light bulb.

Answer: A

What is the formula for finding the area of a surface of revolution when revolving around the y-axis?
A. $A=2 ? ?[\mathrm{a}, \mathrm{b}] \mathrm{x} ?\left(1+\left(\mathrm{f}^{\prime}(\mathrm{x})\right)^{2}\right) \mathrm{dx}$
B. $A=2 ? ?[a, b] y d x$
C. $A=2 ? ?[a, b] y ?\left(1+\left(f^{\prime}(x)\right)^{2}\right) d x$
D. $A=2 ? ?[a, b] x d x$

Answer: C

What is the area of a surface of revolution formed by rotating the line $y=2 x$ around the x-axis between $x=0$ and $\mathrm{x}=4$??
A. 32 ?
B. 16 ?
C. 8 ?
D. 4 ?

Answer: B

Which shape has the greater surface area of revolution when rotated around the x -axis: $\mathrm{y}=\mathrm{x}$ or $\mathrm{y}=\mathrm{x}^{2}$?
A. $y=x$
B. $y=x^{2}$
C. They have the same surface area of revolution.
D. It depends on the bounds of integration.

Answer: B

What is the relationship between the surface area of a surface of revolution and analytical geometry?
A. The formula for the surface area of a surface of revolution is derived from analytical geometry.
B. Analytical geometry has no relation to the surface area of a surface of revolution.
C. The formula for the surface area of a surface of

Lec 38 - Work and Definite Integral

The formula for work when the force applied is not constant is:
A) $W=F(x) d x$
B) $\mathrm{W}=\mathrm{F}(\mathrm{x}) \mathrm{dy}$
C) $\mathrm{W}=\mathrm{F}(\mathrm{x}) \mathrm{dt}$
D) $\mathrm{W}=\mathrm{F}(\mathrm{x}) \mathrm{ds}$

Answer: A) $\mathrm{W}=\mathrm{F}(\mathrm{x}) \mathrm{dx}$

The unit of work is:
A) Joule
B) Meter
C) Newton
D) Watt

Answer: A) Joule

How do you calculate the work done when the force applied is in the opposite direction of the displacement?
A) Positive
B) Negative
C) Zero
D) None of the above

Answer: B) Negative

The work done over a small interval of distance is calculated as:
A) $d W=F(x) d y$
B) $\mathrm{dW}=\mathrm{F}(\mathrm{x}) \mathrm{dt}$
C) $\mathrm{dW}=\mathrm{F}(\mathrm{x}) \mathrm{ds}$
D) $\mathrm{dW}=\mathrm{F}(\mathrm{x}) \mathrm{dx}$

Answer: D) $\mathrm{dW}=\mathrm{F}(\mathrm{x}) \mathrm{dx}$

How do you calculate the work done when the force applied is perpendicular to the displacement?
A) Positive
B) Negative
C) Zero
D) None of the above

Answer: C) Zero

What is the formula for work when lifting a weight to a certain height?
A) $W=?[a, b] F(x) d x$
B) $\mathrm{W}=?[\mathrm{a}, \mathrm{b}] \mathrm{F}(\mathrm{h}) \mathrm{dh}$
C) $\mathrm{W}=\mathrm{Fd}$
D) $\mathrm{W}=m g^{*} \mathrm{~h}$

Answer: B) W = ? $[\mathrm{a}, \mathrm{b}] \mathrm{F}(\mathrm{h}) \mathrm{dh}$

What does the definite integral represent in the context of work?
A) Total force applied
B) Total distance covered
C) Total work done
D) Total displacement

Answer: C) Total work done

How do you find the total work done when the force applied is constant?
A) $\mathrm{W}=\mathrm{Fd}$
B) $\mathrm{W}=?[\mathrm{a}, \mathrm{b}] \mathrm{F}(\mathrm{h}) \mathrm{dh}$
C) $W=?[a, b] F(x) d x$
D) $\mathrm{W}=m g^{*} \mathrm{~h}$

Answer: A) $\mathrm{W}=\mathrm{F}^{*} \mathrm{~d}$

How do you calculate the work done over a small interval of height?
A) $d W=F(x) d x$
B) $d W=F(x) d y$
C) $d W=F(h) d h$
D) $\mathrm{dW}=\mathrm{F}(\mathrm{x}) \mathrm{ds}$

Answer: C) $\mathrm{dW}=\mathrm{F}(\mathrm{h}) \mathrm{dh}$

What is the formula for work when the force applied is in the same direction as the displacement?
A) Positive
B) Negative
C) Zero
D) None of the above

Answer: A) Positive

Lec 39 - Improper Integral

What is the formula for calculating work done by a force F over a distance d in the direction of the force?
a) $\mathrm{W}=\mathrm{Fd}$
b) $W=F / d$
c) $\mathrm{W}=\mathrm{F}^{\wedge} 2 \mathrm{~d}$
d) $\mathrm{W}=\mathrm{Fd}^{\wedge} 2$

Answer: a) W = Fd

Work is defined as:
a) The force required to move an object
b) The distance an object moves
c) The product of force and distance moved in the direction of the force
d) The product of mass and acceleration

Answer: c) The product of force and distance moved in the direction of the force

What is the formula for calculating the work done by a constant force over a displacement?
a) $\mathrm{W}=\mathrm{Fd}$
b) $\mathrm{W}=\mathrm{Fd} \cos$?
c) $\mathrm{W}=\mathrm{Fd} \sin$?
d) $\mathrm{W}=\mathrm{F} / \mathrm{d}$

Answer: b) $\mathrm{W}=\mathrm{Fd} \cos$?

What is the work done by a force of 10 N over a displacement of 5 m at an angle of 30 degrees to the horizontal?
a) 25 J
b) 43.3 J
c) 50 J
d) 86.6 J

Answer: b) 43.3 J

What is the area under a velocity-time graph?
a) Velocity
b) Acceleration
c) Displacement
d) Distance

Answer: d) Distance

The integral of force with respect to distance gives:
a) Acceleration
b) Work
c) Power
d) Momentum

Answer: b) Work

What is the formula for calculating the work done by a variable force over a displacement?
a) $\mathrm{W}=? \mathrm{Fdx}$
b) $\mathrm{W}=? \mathrm{Fdt}$
c) $\mathrm{W}=? \mathrm{~F}$ ds
d) $\mathrm{W}=? \mathrm{~F}$ dv

Answer: c) $\mathrm{W}=? \mathrm{~F}$ ds

What is the work done by a force of 5 N that varies with distance x from 0 to 2 m given by $\mathrm{F}=2 \mathrm{x}^{\wedge} 2$?
a) 10 J
b) 20 J
c) 30 J
d) 40 J

Answer: b) 20 J

What is the formula for calculating the work done by a force F over a distance d with variable force given by $\mathrm{F}(\mathrm{x})$?
a) $W=? F(x) d x$
b) $W=? F(x) d s$
c) $W=F(x) d$
d) $W=F(x) / d$

Answer: a) $W=? F(x) d x$

If the force acting on an object is perpendicular to the direction of motion, what is the work done by the force?
a) Zero
b) Positive
c) Negative
d) Cannot be determined

Answer: a) Zero

Lec 40 - L'Hopital's Rule

Which of the following is an indeterminate form that can be solved using L'Hopital's rule?
a) $5 / 0$
b) $0 / 5$
c) $0 / 0$
d) $5 / 5$

Answer: c) 0/0

L'Hopital's rule can only be used for:
a) Limits of indeterminate forms
b) Limits that converge to a finite value
c) Limits that diverge to infinity
d) None of the above

Answer: a) Limits of indeterminate forms

What is the general form of L'Hopital's rule?
a) $\lim x ? ? f(x) / g(x)=\lim x ? ? f^{\prime}(x) / g^{\prime}(x)$
b) $\lim \mathrm{x} ? \mathrm{c} \mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})=\lim \mathrm{x} ? \mathrm{c} \mathrm{f}^{\prime}(\mathrm{x}) / \mathrm{g}^{\prime}(\mathrm{x})$
c) $\lim x ? 0 f(x) / g(x)=\lim x ? 0 f^{\prime}(x) / g^{\prime}(x)$
d) None of the above

Answer: b) $\lim \mathrm{x} ? \mathrm{c} \mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})=\lim \mathrm{x} ? \mathrm{c} \mathrm{f}^{\prime}(\mathrm{x}) / \mathrm{g}^{\prime}(\mathrm{x})$

Which of the following is an example of an indeterminate form ?/ ??
a) $\lim x ? 0 \sin (x) / x$
b) $\lim x ? ? e^{\wedge} x / x^{\wedge} 2$
c) $\lim x ? ? \ln (x) / x$
d) None of the above

Answer: b) $\lim \mathrm{x}$? ? $\mathrm{e}^{\wedge} \mathrm{x} / \mathrm{x}^{\wedge} 2$

L'Hopital's rule can be applied:
a) Once
b) Twice
c) Multiple times
d) None of the above

Answer: c) Multiple times

Which of the following is an example of an indeterminate form 0 x ??
a) $\lim x ? ?(x+1) /(x-1)$
b) $\lim x ? 0(1-\cos (x)) / x^{\wedge} 2$
c) $\lim x ? ? x \ln (x)$
d) None of the above

Answer: c) $\lim \mathrm{x}$? ? $\mathrm{x} \ln (\mathrm{x})$

Which of the following is an example of an indeterminate form ?-??
a) $\lim x ? 0(1-\cos (x)) / x^{\wedge} 2$
b) $\lim \mathrm{x} ? ? \mathrm{x}-\mathrm{e}^{\wedge} \mathrm{x}$
c) $\lim x ? ?\left(x^{\wedge} 2+1\right) /(x+1)$
d) None of the above

Answer: b) $\lim \mathrm{x}$? ? $\mathrm{x}-\mathrm{e}^{\wedge} \mathrm{x}$

L'Hopital's rule fails to solve indeterminate forms when:
a) The limit is not an indeterminate form
b) The limit is a determinate form
c) The limit does not exist
d) None of the above

Answer: c) The limit does not exist

Which of the following is an example of an indeterminate form $0 / 0$?
a) $\lim x ? 1(x-1) /\left(x^{\wedge} 2-1\right)$
b) $\lim x ? ?(1+1 / x)^{\wedge} x$
c) $\lim x ? 0 \ln (x) / x$
d) None of the above

Answer: a) $\lim x ? 1(x-1) /\left(x^{\wedge} 2-1\right)$

Which of the following is an example of an indeterminate form ?/ ??
a) $\lim x ? 0 \sin (x) / x$
b) $\lim \mathrm{x} ? ? \mathrm{e}^{\wedge}$

Lec 41 - Sequence

Which of the following is a recursive formula for the Fibonacci sequence?
a) $f _n=n^{\wedge} 2$
b) $\mathrm{f} _1=1, \mathrm{f} _2=1, \mathrm{f} _\mathrm{n}=\mathrm{f} _\{\mathrm{n}-1\}+\mathrm{f} _\{\mathrm{n}-2\}$
c) $\mathrm{f} _\mathrm{n}=\mathrm{n}$!
d) $f _n=2^{\wedge} n$

Answer: b) $\mathrm{f} _1=1, \mathrm{f} _2=1, \mathrm{f}_{-} \mathrm{n}=\mathrm{f}_{-}\{\mathrm{n}-1\}+\mathrm{f}_{-}\{\mathrm{n}-2\}$

What is the nth term of the arithmetic sequence $2,5,8,11, \ldots$?
a) $2 n+1$
b) $3 n+1$
c) $3 n-1$
d) $2 n+2$

Answer: d) $2 n+2$

Which of the following tests is used to determine whether an infinite series converges or diverges?
a) Comparison test
b) Limit comparison test
c) Integral test
d) All of the above

Answer: d) All of the above

What is the sum of the geometric series $1 / 2+1 / 4+1 / 8+\ldots+(1 / 2)^{\wedge} n+\ldots ?$
a) 1
b) 2
c) $3 / 2$
d) $4 / 3$

Answer: c) 3/2

Which of the following is a bounded sequence?
a) $\left\{n^{\wedge} 2\right\}$
b) $\left\{(-1)^{\wedge} \mathrm{n}\right\}$
c) $\{1 / \mathrm{n}\}$
d) $\{\mathrm{n} /(\mathrm{n}+1)\}$

Answer: d) $\{\mathrm{n} /(\mathrm{n}+1)\}$

Which of the following is an example of an arithmetic sequence?
a) $1,3,9,27, \ldots$
b) $1,2,4,8, \ldots$
c) $2,4,8,16, \ldots$
d) $1,1 / 2,1 / 4,1 / 8, \ldots$

Answer: b) 1, 2, 4, $8, \ldots$

What is the nth term of the geometric sequence $1,2,4,8, \ldots$?
a) $2^{\wedge} n$
b) 2 n
c) $n^{\wedge} 2$
d) n !

Answer: a) $2^{\wedge} n$

Which of the following is an example of a divergent series?
a) $1 / 2+1 / 4+1 / 8+\ldots+(1 / 2)^{\wedge} n+\ldots$
b) $1+1 / 2+1 / 3+\ldots+1 / n+\ldots$
c) $1-1 / 2+1 / 3-\ldots+(-1)^{\wedge} \mathrm{n} / \mathrm{n}+\ldots$
d) $e^{\wedge} x=1+x+x^{\wedge} 2 / 2!+x^{\wedge} 3 / 3!+\ldots$

Answer: c) $1-1 / 2+1 / 3-\ldots+(-1)^{\wedge} n / n+\ldots$

What is the limit of the sequence $\{1 / n\}$ as n approaches infinity?
a) 0
b) 1
c) -1
d) Does not exist

Answer: a) 0

Which of the following is a formula for the nth term of a geometric sequence?
a) $\mathrm{a} _\mathrm{n}=\mathrm{a} _1+(\mathrm{n}-1) \mathrm{d}$
b) $\mathrm{a} _\mathrm{n}=\mathrm{a} _1 * \mathrm{r}^{\wedge}(\mathrm{n}-1)$
c) $\mathrm{a}_{-} \mathrm{n}=\mathrm{n}^{\wedge} 2$
d) $\mathrm{a} _\mathrm{n}=\mathrm{a} _1+\mathrm{r}^{\wedge} \mathrm{n}$

Answer: b) $\mathrm{a} _\mathrm{n}=\mathrm{a}$

Lec 42 - Infinite Series

Which of the following tests can be used to determine if an infinite series converges or diverges?
a) Limit comparison test
b) Ratio test
c) Integral test
d) All of the above

Answer: d) All of the above

Which of the following series is divergent?
a) $1+1 / 2+1 / 4+1 / 8+\ldots$
b) $1+1 / 3+1 / 5+1 / 7+\ldots$
c) $1 / 2+1 / 4+1 / 6+1 / 8+\ldots$
d) $1-1 / 2+1 / 3-1 / 4+\ldots$

Answer: a) $1+1 / 2+1 / 4+1 / 8+\ldots$

Which of the following tests should be used to determine the convergence of a series with only positive terms?
a) Integral test
b) Ratio test
c) Alternating series test
d) Divergence test

Answer: b) Ratio test

Which of the following series is convergent?
a) $1-1 / 2+1 / 4-1 / 8+\ldots$
b) $1+1 / 2+1 / 3+1 / 4+\ldots$
c) $1+1 / 4+1 / 16+1 / 64+\ldots$
d) $1 / 2+1 / 3+1 / 4+1 / 5+\ldots$

Answer: a) $1-1 / 2+1 / 4-1 / 8+\ldots$

What is the nth-term test for divergence?

a) The series diverges if the limit of the nth term as n approaches infinity is zero.
b) The series converges if the limit of the nth term as n approaches infinity is zero.
c) The test can only be used for series with alternating terms.
d) The test can only be used for series with positive terms.

Answer: a) The series diverges if the limit of the nth term as n approaches infinity is zero.

Which of the following tests can be used to determine the convergence of an alternating series?
a) Divergence test
b) Ratio test
c) Integral test
d) Alternating series test

Answer: d) Alternating series test

Which of the following series is divergent?
a) $1-1 / 3+1 / 5-1 / 7+\ldots$
b) $1+2+3+4+\ldots$
c) $1 / 2+1 / 3+1 / 5+1 / 7+\ldots$
d) $1 / 2+1 / 4+1 / 8+1 / 16+\ldots$

Answer: b) $1+2+3+4+\ldots$

Which of the following tests should be used to determine the convergence of a series with alternating signs and decreasing absolute values?
a) Divergence test
b) Ratio test
c) Integral test
d) Alternating series test

Answer: d) Alternating series test

Which of the following tests can be used to determine if a series is absolutely convergent?
a) Ratio test
b) Alternating series test
c) Integral test
d) Divergence test

Answer: c) Integral test

Which of the following series is divergent?
a) $1 / \ln (n)$
b) $1 / n^{\wedge} 2$
c) $1 / n$!
d) $1 / 2^{\wedge} n$

Answer: d) 1/

Lec 43 - Additional Convergence tests

Which of the following tests is used to determine if a series is absolutely convergent?
A) Ratio test
B) Integral test
C) Root test
D) Comparison test

Answer: C) Root test

Which of the following series is convergent?
A) ? $\mathrm{n}=1$ to infinity ($1 / \mathrm{n}$)
B) $? \mathrm{n}=1$ to infinity $\left(1 /\left(\mathrm{n}^{\wedge} 2\right)\right)$
C) ? $\mathrm{n}=1$ to infinity $\left(1 / \mathrm{n}^{\wedge} 3\right)$
D) $? \mathrm{n}=1$ to infinity $\left(\mathrm{n}^{\wedge} 2\right)$

Answer: B) ? $\mathrm{n}=1$ to infinity ($1 /\left(\mathrm{n}^{\wedge} 2\right)$)

Which of the following convergence tests is based on comparing the given series with a simpler series whose convergence or divergence is known?
A) Root test
B) Ratio test
C) Comparison test
D) Integral test

Answer: C) Comparison test

Which of the following series is divergent?
A) ? $n=1$ to infinity $\left(1 / 2^{\wedge} n\right)$
B) ? $n=1$ to infinity ($1 / \mathrm{n}$!)
C) ? $\mathrm{n}=1$ to infinity $\left(\mathrm{n} / 2^{\wedge} \mathrm{n}\right)$
D) ? $\mathrm{n}=1$ to infinity ($1 / \mathrm{n}$)

Answer: B) ? n=1 to infinity ($1 / \mathrm{n}$!)

Which of the following tests is used to determine if a series is conditionally convergent?
A) Alternating series test
B) Divergence test
C) Integral test
D) Comparison test

Answer: A) Alternating series test

Which of the following tests can be used to determine the convergence of a series with positive terms?
A) Divergence test
B) Ratio test
C) Integral test
D) Root test

Answer: D) Root test

Which of the following tests is used to determine the convergence of an alternating series?
A) Ratio test
B) Integral test
C) Root test
D) Alternating series test

Answer: D) Alternating series test

Which of the following tests can be used to determine the convergence of a series with negative terms?
A) Integral test
B) Comparison test
C) Root test
D) Divergence test

Answer: B) Comparison test

Which of the following series is convergent?
A) ? $n=1$ to infinity $\left(n / 2^{\wedge} n\right)$
B) $? \mathrm{n}=1$ to infinity $\left(1 / \mathrm{n}^{\wedge} 2+2\right)$
C) $? \mathrm{n}=1$ to infinity $(1 / \ln (\mathrm{n}))$
D) $? \mathrm{n}=1$ to infinity $\left(\mathrm{n}^{\wedge}(3 / 2) /\left(\mathrm{n}^{\wedge} 2+1\right)\right)$

Answer: A) ? $n=1$ to infinity $\left(n / 2^{\wedge} n\right)$

Which of the following convergence tests is used to determine the convergence of a series with nonnegative terms, but whose terms do not approach zero?
A) Ratio test
B) Root test
C) Integral test
D) Divergence test

Answer: D) Divergence test

Lec 44 - Alternating Series; Conditional Convergence

Which of the following series is an alternating series?
a. ? $\mathrm{n}=1$ to ? $1 / \mathrm{n}^{\wedge} 2$
b. ? $\mathrm{n}=0$ to ? $(-1)^{\wedge} \mathrm{n} / \mathrm{n}$
c. ? $\mathrm{n}=1$ to ? $1 / 2^{\wedge} \mathrm{n}$
d. ? $\mathrm{n}=1$ to ? $(\mathrm{n}+1) / \mathrm{n}^{\wedge} 2$

Answer: b

What is the alternating series test used for?
a. To determine if an alternating series converges
b. To determine if a geometric series converges
c. To determine if a power series converges
d. To determine if a series is telescoping

Answer: a

Which of the following series converges conditionally?
a. ? $\mathrm{n}=1$ to ? $(-1)^{\wedge} \mathrm{n} / \mathrm{n}$
b. ? $\mathrm{n}=1$ to ? $1 / \mathrm{n}$
c. ? $\mathrm{n}=1$ to ? $(-1)^{\wedge} \mathrm{n} /(2 \mathrm{n}+1)$
d. ? $\mathrm{n}=1$ to $?(-1)^{\wedge} \mathrm{n} /\left(\mathrm{n}^{\wedge} 2+1\right)$

Answer: d

Which of the following statements about a conditionally convergent series is true?
a. The series diverges.
b. The series converges absolutely.
c. The series converges conditionally.
d. The series converges but is not alternating.

Answer: c

Which of the following series is conditionally convergent?
a. ? $\mathrm{n}=1$ to $?(-1)^{\wedge} \mathrm{n} / \mathrm{n}^{\wedge} 2$
b. ? $\mathrm{n}=1$ to $?(-1)^{\wedge} \mathrm{n} /(2 \mathrm{n}+1)$
c. ? $\mathrm{n}=1$ to $? 1 / 2^{\wedge} \mathrm{n}$
d. ? $\mathrm{n}=1$ to ? $\mathrm{n} /(\mathrm{n}+1)$

Answer: b

If a series is conditionally convergent, which of the following must be true?
a. The series is alternating.
b. The series is divergent.
c. The series converges absolutely.
d. The series does not converge.

Answer: a

Which of the following is an example of a conditionally convergent series?
a. ? $n=1$ to ? $1 / n^{\wedge} 2$
b. ? $\mathrm{n}=1$ to $?(-1)^{\wedge} \mathrm{n} / \mathrm{n}$
c. ? $\mathrm{n}=1$ to ? n !
d. ? $\mathrm{n}=1$ to ? (2n)!

Answer: b

Which of the following tests can be used to test for conditional convergence?
a. Integral test
b. Ratio test
c. Comparison test
d. Alternating series test

Answer: d

Which of the following statements is true about a convergent alternating series?
a. The series converges absolutely.
b. The series converges conditionally.
c. The series is divergent.
d. The series is not alternating.

Answer: b

Which of the following is an example of an alternating series that converges conditionally?
a. ? $\mathrm{n}=1$ to ? $1 / \mathrm{n}^{\wedge} 2$
b. ? $\mathrm{n}=1$ to ? $(-1)^{\wedge} \mathrm{n} /(2 \mathrm{n}+1)$
c. ? $\mathrm{n}=1$ to ? $(-1)^{\wedge} \mathrm{n} /\left(\mathrm{n}^{\wedge} 2+1\right)$
d. ? $\mathrm{n}=1$ to $? \mathrm{n} /(\mathrm{n}+1)$

Answer: c

Lec 45 - Taylor and Maclaurin Series

What is the Maclaurin series for $f(x)=e^{\wedge} x$?
A. $1+x+x^{\wedge} 2 / 2!+x^{\wedge} 3 / 3!+\ldots$
B. $1+x+x^{\wedge} 2 / 2!+x^{\wedge} 3 / 3!+\ldots+x^{\wedge} n / n!+\ldots$
C. $1+x+x^{\wedge} 2 / 2!+x^{\wedge} 3 / 3!+\ldots+x^{\wedge} n / n!+\ldots+x^{\wedge} ? / ?!$
D. None of the above

Answer: A

What is the Taylor series for $f(x)=\sin (x)$ centered at $x=0$?
A. $x-x^{\wedge} 3 / 3!+x^{\wedge} 5 / 5!-x^{\wedge} 7 / 7!+\ldots$
B. $x+x^{\wedge} 3 / 3!+x^{\wedge} 5 / 5!+x^{\wedge} 7 / 7!+\ldots$
C. $1+x+x^{\wedge} 2 / 2!+x^{\wedge} 3 / 3!+\ldots+x^{\wedge} n / n!+\ldots$
D. None of the above

Answer: A

What is the Taylor series for $f(x)=\ln (x)$ centered at $x=1$?
A. $(x-1)-(x-1)^{\wedge} 2 / 2+(x-1)^{\wedge} 3 / 3-(x-1)^{\wedge} 4 / 4+\ldots$
B. $(\mathrm{x}-1)+(\mathrm{x}-1)^{\wedge} 2 / 2-(\mathrm{x}-1)^{\wedge} 3 / 3+(\mathrm{x}-1)^{\wedge} 4 / 4-\ldots$
C. $1+x+x^{\wedge} 2 / 2!+x^{\wedge} 3 / 3!+\ldots+x^{\wedge} n / n!+\ldots$
D. None of the above

Answer: B

What is the Maclaurin series for $f(x)=\cos (x)$?
A. $1-x^{\wedge} 2 / 2!+x^{\wedge} 4 / 4!-x^{\wedge} 6 / 6!+\ldots$
B. $1-x^{\wedge} 2 / 2!+x^{\wedge} 4 / 4!-x^{\wedge} 6 / 6!+\ldots+x^{\wedge} n / n!-\ldots$
C. $x-x^{\wedge} 3 / 3!+x^{\wedge} 5 / 5!-x^{\wedge} 7 / 7!+\ldots$
D. None of the above

Answer: A

What is the Taylor series for $f(x)=\operatorname{sqrt}(x)$ centered at $x=4$?
A. $2-(x-4) / 4+(x-4)^{\wedge} 2 / 32-(x-4)^{\wedge} 3 / 256+\ldots$
B. $2+(\mathrm{x}-4) / 4-(\mathrm{x}-4)^{\wedge} 2 / 32+(\mathrm{x}-4)^{\wedge} 3 / 256+\ldots$
C. $1+x+x^{\wedge} 2 / 2!+x^{\wedge} 3 / 3!+\ldots+x^{\wedge} n / n!+\ldots$
D. None of the above

Answer: A

Which test can be used to determine if a Taylor series converges?
A. Ratio test
B. Root test
C. Comparison test
D. Alternating series test

Answer: B

What is the interval of convergence for the Maclaurin series of $f(x)=1 /(1+x)$?
A. $(-1,1)$
B. $(-1,1]$
C. $[-1,1)$
D. $[-1,1]$

Answer: D

What is the interval of convergence for the Taylor series of $f(x)=e^{\wedge} x$ centered at $x=3$?
A. (-?, ?)
B. $(-3$,

