28 Lecture - MTH101

Important Mcqs

What is the formula for finding the area of a shape using the concept of limits?

A. A $=$ length x width
B. $A=\lim _{-}\{n \backslash t o l i n f t y\} \backslash s u m_{-}\{i=1\}^{\wedge} n f\left(x _i\right) \backslash$ Delta x
C. $\mathrm{A}=($ base x height $) / 2$
D. $\mathrm{A}=\mathrm{pi} \mathrm{x}$ radius $^{\wedge} 2$

Answer: B

What is the relationship between the width of the rectangles and the accuracy of the approximation?
A. The wider the rectangles, the more accurate the approximation
B. The narrower the rectangles, the more accurate the approximation
C. The width of the rectangles has no effect on the accuracy of the approximation
D. The accuracy of the approximation is determined by the shape of the curve

Answer: B

How does the concept of area as a limit help to approximate the area under a curve?
A. By dividing the shape into smaller and smaller circles
B. By dividing the shape into smaller and smaller rectangles
C. By dividing the shape into smaller and smaller triangles
D. By using the Pythagorean theorem to find the area of the shape

Answer: B

What is the practical application of the concept of area as a limit in physics?
A. To find the area of a rectangle
B. To find the area of a circle
C. To find the displacement of an object
D. To find the volume of a sphere

Answer: C

What is the significance of the concept of area as a limit in calculus and analytical geometry?
A. It allows us to find the volume of a sphere
B. It allows us to find the circumference of a circle
C. It allows us to find the area under curves and more complex shapes
D. It allows us to find the slope of a curve at a given point

Answer: C

How can the concept of area as a limit be applied to more complex shapes?
A. By dividing the shape into smaller and smaller rectangles
B. By dividing the shape into smaller and smaller circles
C. By dividing the shape into smaller and smaller triangles
D. By using the Pythagorean theorem to find the area of the shape

Answer: C

What is the formula for finding the area of a triangle?

A. $\mathrm{A}=$ length x width
B. $\mathrm{A}=($ base x height $) / 2$
C. $A=$ pi x radius $^{\wedge} 2$
D. $A=\lim _\{n \backslash t o l i n f t y\} \backslash s u m _\{i=1\}^{\wedge} n f\left(x _i\right) \backslash$ Delta x

Answer: B

How does the limit of the sum of the areas of triangles help to approximate the area of a complex shape?
A. By dividing the shape into smaller and smaller triangles
B. By dividing the shape into smaller and smaller rectangles
C. By dividing the shape into smaller and smaller circles
D. By using the Pythagorean theorem to find the area of the shape

Answer: A

What are some real-world applications of the concept of area as a limit?

A. Solving problems involving irregular shapes and curves in physics
B. Calculating the circumference of a circle in engineering
C. Finding the area of a rectangle in economics
D. Determining the volume of a cylinder in mathematics

Answer: A

What is the mathematical formula for finding the area of a circle?
A. $\mathrm{A}=$ length x width
B. $\mathrm{A}=($ base x height $) / 2$
C. $A=$ pi $x \operatorname{radius}^{\wedge} 2$
D. $A=\lim _{-}\{n \backslash$ tolinfty $\} \backslash$ sum $_\{i=1\}^{\wedge} n f\left(x _i\right) \backslash$ Delta x

