
23 Lecture - CS201

Important Subjective

1. What is the purpose of the pre-processor in C programming?
Answer: The pre-processor performs pre-processing tasks such as handling pre-processor 
directives and including header files before the code is compiled.

2. What is a macro in C programming?
Answer: A macro is a pre-processor directive that defines a text replacement that is expanded 
by the pre-processor.

3. How is a macro defined in C programming?
Answer: A macro is defined using the #define directive followed by the macro name and its 
replacement text.

4. What is the purpose of the #include directive in C programming?
Answer: The #include directive is used to include header files that contain function prototypes, 
constant definitions, and other declarations needed in the source code.

5. What is the purpose of the #ifdef directive in C programming?
Answer: The #ifdef directive is used to include or exclude blocks of code depending on whether 
a certain macro has been defined.

6. How is a macro undefined in C programming?
Answer: A macro is undefined using the #undef directive followed by the macro name.

7. What is conditional compilation in C programming?
Answer: Conditional compilation is the process of including or excluding blocks of code based 
on certain conditions such as the target platform or the compiler being used.

8. What is the purpose of the #pragma directive in C programming?
Answer: The #pragma directive is used to specify implementation-specific behavior or provide 
hints to the compiler.

9. What are the potential risks of using pre-processor directives excessively in C 
programming?
Answer: Overuse of pre-processor directives can lead to code that is hard to read, maintain, and 
debug. It can also make the code more error-prone.

10. Can pre-processor directives be used in languages other than C?
Answer: Yes, many programming languages have pre-processor directives, including C++, 
Objective-C, and Fortran.


