
8 Lecture - CS301

Important Subjective

1. What is the main advantage of postfix notation over infix notation?
Answer: Postfix notation eliminates the need for parentheses to indicate the order of operations.

2. What is the role of a stack in converting an infix expression to postfix notation?
Answer: The stack is used to keep track of operators and their precedence levels.

3. How do you handle errors while converting an infix expression to postfix notation?
Answer: By checking for balanced parentheses and errors during scanning.

4. What is the first step in converting an infix expression to postfix notation?
Answer: Initializing an empty stack and postfix expression.

5. How do you handle operators with equal precedence levels while converting infix to 
postfix notation?
Answer: Operators with equal precedence levels are added to the postfix expression based on 
the associativity rules (left to right or right to left).

6. What happens to a left parenthesis when converting infix to postfix notation?
Answer: The left parenthesis is pushed onto the stack.

7. What is the final step in converting an infix expression to postfix notation?
Answer: Pop any remaining operators off the stack and add them to the postfix expression.

8. What is the difference between infix notation and postfix notation?
Answer: In infix notation, operators are written between their operands, while in postfix notation, 
operators are written after their operands.

9. What are the advantages of using a postfix notation over infix notation?
Answer: Postfix notation eliminates the need for parentheses to indicate the order of operations, 
and it is easier to evaluate expressions using a stack-based algorithm.

10. How can you convert an infix expression with nested parentheses to postfix notation?
Answer: By using a stack-based algorithm to remove the nested parentheses and convert the 
expression to postfix notation.


