42 Lecture - CS301

Important Subjective

1. What is collision in hash tables?

Answer: Collision in hash tables occurs when two or more keys hash to the same index.

2. How can we resolve collisions in open addressing?

Answer: In open addressing, we resolve collisions by probing through the table and finding an empty slot to store the collided key.

3. What is chaining in hash tables?

Answer: Chaining is a technique used to resolve collisions in hash tables by storing the collided keys in a linked list at the hashed index.

4. What is the load factor in hash tables?

Answer: The load factor in hash tables is the ratio of the number of keys stored to the total number of slots in the hash table.

5. What is rehashing in hash tables?

Answer: Rehashing is the process of increasing the size of the hash table and redistributing the keys in order to reduce the load factor and maintain O(1) average time complexity.

6. What is the worst-case time complexity of hash table operations?

Answer: The worst-case time complexity of hash table operations is O(n), where n is the number of keys stored in the hash table, but in practice, hash tables have an average-case time complexity of O(1).

7. What is the difference between linear probing and quadratic probing?

Answer: Linear probing resolves collisions by probing the next slot in the table, while quadratic probing uses a quadratic function to determine the next slot to probe.

8. How do you calculate the load factor of a hash table?

Answer: The load factor of a hash table is calculated by dividing the number of keys stored by the number of slots in the table.

9. What is the worst-case time complexity of searching in a hash table?

Answer: The worst-case time complexity of searching in a hash table is O(n), but in practice, searching has an average-case time complexity of O(1).

10. What is a perfect hash function?

Answer: A perfect hash function is a hash function that generates unique indices for every key, so there are no collisions.