34 L ecture - CS304

| mportant Subjective

1. What are generic algorithms, and why are they important in programming?
Answer: Generic algorithms are algorithms designed to work with any data type, providing a
reusable and adaptable solution to programming problems.

How are generic algorithms different from regular algorithms?
Answer: Regular algorithms are designed to work with specific data types, whereas generic
algorithms can work with any data type.

What are the benefits of using generic algorithms in programming?
Answer: Generic algorithms provide increased reusability and adaptability of code, reducing
development time and code complexity.

What are some examples of generic algorithms?
Answer: std::sort, std::transform, std::find_if are some examples of generic algorithms in C++.

What is the syntax for using generic algorithms in Java?
Answer: The syntax for using generic algorithms in Java is < >.

What is the purpose of the std::transform algorithm in C++?
Answer: The std::transform algorithm applies a function to each element in a range,
transforming it into a new value.

Can generic algorithms be used with user-defined data types?
Answer: Yes, generic algorithms can be used with user-defined data types.

What is the difference between a generic algorithm and a template function?
Answer: A generic algorithm is a specific type of template function designed to work with any
data type, whereas a template function can be specialized for specific data types.

How can generic algorithms help reduce code duplication?
Answer: By creating a generic algorithm that can work with any data type, developers can avoid
writing the same code multiple times for different data types.

What is type erasure, and how is it related to generic algorithms?

Answer: Type erasure is the process of removing the generic type information from a generic
class or method during compilation. It allows for backward compatibility with older code that was
not designed to use generics and is related to generic algorithms in that it is a fundamental
concept in generic programming.



