
11 Lecture - CS504

Important Subjective

What is the difference between cohesion and coupling in software design? Answer:
Cohesion refers to the degree of relatedness within a module, indicating how closely the
responsibilities of the module are aligned. Coupling, on the other hand, measures the degree of
interdependence between modules. High cohesion and low coupling are desirable design
qualities. Explain the SOLID principles of software design. Answer: SOLID is an acronym
representing five design principles: Single Responsibility Principle (SRP), Open-Closed Principle
(OCP), Liskov Substitution Principle (LSP), Interface Segregation Principle (ISP), and
Dependency Inversion Principle (DIP). These principles guide software design to achieve
modularity, maintainability, and extensibility. What is the purpose of design patterns in
software development? Answer: Design patterns provide proven solutions to recurring design
problems in software development. They promote reusable and modular designs, improve code
maintainability, and facilitate communication among developers by providing a common
vocabulary for discussing design concepts. What is the difference between the factory method
and abstract factory design patterns? Answer: The factory method pattern defines an interface
for creating objects, but allows subclasses to decide which class to instantiate. In contrast, the
abstract factory pattern provides an interface for creating families of related or dependent objects
without specifying their concrete classes. What are the advantages of using the Model-View-
Controller (MVC) architectural pattern? Answer: MVC promotes separation of concerns by
dividing an application into three components: the model (data and business logic), the view (user
interface), and the controller (handles user input and coordinates model-view interaction). Benefits
include modularity, code reusability, and ease of maintenance. Explain the concept of loose
coupling in software design. Answer: Loose coupling refers to reducing dependencies between
software components. It allows changes in one component to have minimal impact on others,
making the system more flexible and maintainable. Loose coupling is achieved through well-
defined interfaces and dependency injection. What is the purpose of the decorator design
pattern? Answer: The decorator pattern allows behavior to be added dynamically to an object at
runtime by wrapping it in a decorator class. This pattern provides a flexible alternative to
subclassing for extending the functionality of individual objects without modifying their original
classes. Describe the concept of inversion of control (IoC) in software design. Answer:
Inversion of Control refers to the shift of control from application code to a framework or container.
Instead of instantiating and managing dependencies directly, IoC containers handle the creation
and injection of dependencies, promoting loose coupling and modular design. What is the role of
the architect in software design? Answer: The architect is responsible for designing the overall
structure and behavior of a software system. They make high-level design decisions, define
architectural patterns, choose appropriate technologies, and ensure that the system meets
functional and non-functional requirements. What are the key considerations when designing
for scalability in software systems? Answer: When designing for scalability, considerations
include distributed architecture, horizontal scaling, efficient resource utilization, load balancing,
caching strategies, and the ability to handle increasing volumes of data and users while
maintaining performance and reliability.


