
14 Lecture - CS504

Important Subjective

Q: Define the term "Inheritance" in OOAD and explain its significance. A: Inheritance is a key
concept in OOAD where a class (subclass) inherits properties and behaviors from another class
(superclass). It promotes code reuse and allows creating specialized classes based on existing
ones, leading to a more organized and extensible design. Q: What is the purpose of the
"Factory Method" design pattern in OOAD? Provide an example of its application. A: The
Factory Method pattern provides an interface for creating objects, allowing subclasses to decide
which class to instantiate. For example, in a game, a Factory Method can be used to create
different types of enemy objects based on the level difficulty, making the game design more
flexible. Q: Explain the term "Polymorphism" in OOAD and describe its advantages. A:
Polymorphism allows objects of different classes to be treated as objects of the same class. It
enhances flexibility and extensibility by enabling a single interface to handle multiple
implementations, making code more concise and maintainable. Q: How does OOAD contribute
to the development of maintainable and scalable software systems? A: OOAD facilitates
creating modular and reusable components, which leads to a well-organized and maintainable
system. It allows developers to manage complexity, adapt to changing requirements, and easily
extend the software's functionality, making it scalable over time. Q: Discuss the importance of
UML diagrams in OOAD. Provide examples of two UML diagrams and their uses. A: UML
diagrams help visualize system components and their relationships, aiding in better understanding
and communication. For example, the Class Diagram shows the static structure of classes and
their associations, while the Sequence Diagram represents the dynamic behavior of objects during
interactions. Q: What is the "Single Responsibility Principle" (SRP) in OOAD, and how does
it impact software design? A: SRP states that a class should have only one reason to change. It
promotes cohesion and ensures that each class is responsible for a specific functionality, leading
to a more maintainable and understandable codebase. Q: Explain the concept of
"Composition" in OOAD with an example. A: Composition represents a strong "whole-part"
relationship between classes, where the child class cannot exist independently of the parent class.
For instance, a Car class composed of Engine and Wheel classes, where the Car manages the
Engine and Wheels and cannot exist without them. Q: How does OOAD help in identifying and
managing software requirements effectively? A: OOAD involves techniques like Use Case
Analysis, where system functionalities are identified and represented as interactions between
actors and the system. This helps in understanding and documenting requirements clearly,
leading to better software development. Q: Discuss the advantages of using the "Observer"
design pattern in OOAD and provide a real-world scenario where it can be applied. A: The
Observer pattern facilitates loosely coupled communication between objects, promoting flexibility
and reusability. For example, in a weather monitoring application, multiple displays can observe
changes in weather data without directly depending on each other, ensuring a scalable and
modular design. Q: How does Encapsulation enhance data security and maintainability in
OOAD? A: Encapsulation hides the internal implementation details of a class, exposing only
necessary interfaces. This protects data from direct manipulation and ensures that changes to the
internal state are controlled through defined methods, reducing the risk of unintended errors and
simplifying maintenance.


