
27 Lecture - CS504

Important Subjective

Q: What is the Observer Pattern? A: The Observer Pattern is a behavioral design pattern that
facilitates real-time communication between objects, where the subject notifies its registered
observers about state changes. Q: Explain the key components of the Observer Pattern. A:
The main components are the Subject, which maintains a list of observers, and the Observers,
which register with the subject to receive updates. Q: How does the Observer Pattern promote
loose coupling? A: Observers depend only on the subject's interface, reducing direct
dependencies and enhancing flexibility and maintainability. Q: What is the purpose of the
Dependency Inversion Principle in the context of the Observer Pattern? A: The Dependency
Inversion Principle guides the pattern's implementation, ensuring that high-level modules
(observers) depend on abstractions (subject) rather than concrete implementations. Q: Describe
the sequence of actions when a subject's state changes in the Observer Pattern. A: The
subject notifies all registered observers, and they update themselves based on the state change.
Q: How can the Observer Pattern enhance code reusability in software systems? A: By
decoupling the subject and observers, the same subject can notify different observers, promoting
code reuse for various functionalities. Q: Provide an example scenario where the Observer
Pattern is useful. A: In a stock market application, various investors (observers) need real-time
updates when the stock prices (subject) change. Q: What challenges should developers
consider when using the Observer Pattern? A: Developers should be mindful of potential
memory leaks or performance issues when dealing with a large number of observers. Q: How
does the Observer Pattern differ from the Publish-Subscribe Pattern? A: The Observer
Pattern involves a one-to-many relationship, while the Publish-Subscribe Pattern enables many-
to-many communication. Q: Can a subject have different types of observers in the Observer
Pattern? A: Yes, a subject can have different types of observers that implement a common
interface, enabling a flexible and heterogeneous observer collection.


