
15 Lecture - CS506

Important Subjective

Certainly, here are 10 subjective short questions along with their answers related to advanced concepts in
Java Database Connectivity (MoreOnJDBC):

Question 1: What is connection pooling in JDBC, and why is it important?

Answer: Connection pooling involves reusing and managing a pool of database connections. It's
essential for optimizing resource usage, as creating new connections is resource-intensive. Connection
pooling improves application performance by efficiently managing available connections for multiple
clients.

Question 2: Explain the concept of a JDBC transaction.

Answer: A JDBC transaction represents an atomic unit of work on a database. It consists of
multiple SQL statements that are executed as a single, cohesive operation. Transactions ensure data
integrity and consistency, either committing all changes if successful or rolling back if an error occurs.

Question 3: How does the `Connection` interface handle transactions in JDBC?

Answer: The `Connection` interface provides methods like `commit()` and `rollback()` to handle
transactions. Transactions can be initiated with `setAutoCommit(false)` and then explicitly committed
or rolled back based on the desired outcome of the database operations.

**Question 4: What are prepared statements, and why are they recommended over regular
statements?**

Answer: Prepared statements are pre-compiled SQL statements that accept parameters. They are
recommended over regular statements for several reasons: they offer better performance due to pre-
compilation, prevent SQL injection attacks, and allow efficient execution of parameterized queries.

Question 5: How does batch processing contribute to improving performance in JDBC?

Answer: Batch processing involves executing multiple SQL statements in a single batch,
minimizing the overhead of database round-trips. This improves performance by reducing the
network communication and optimizing query execution, especially for scenarios with repetitive
operations.

Question 6: Describe the purpose of a stored procedure in JDBC and its benefits.

Answer: A stored procedure is a precompiled database program that can be called from a JDBC
application. Benefits include encapsulating complex operations, promoting code reusability, enhancing
security by preventing direct SQL exposure, and reducing network traffic by executing on the
database server.

Question 7: How do you call a stored procedure using the `CallableStatement` interface in JDBC?

Answer: To call a stored procedure, you create a `CallableStatement` object using a SQL call
string with placeholders for input and output parameters. Then you set parameter values using
`setXXX()` methods, execute the procedure using `execute()`, and retrieve output parameters using
`getXXX()` methods.

Question 8: Explain the role of `ResultSetMetaData` in JDBC.

Answer: `ResultSetMetaData` is an interface that provides metadata about a `ResultSet`. It offers
methods to retrieve information about column names, types, and properties of the result set. This
metadata helps in dynamically handling various query results.

Question 9: How can you handle exceptions and manage error scenarios in JDBC applications?

Answer: JDBC methods may throw exceptions related to database connectivity, query execution,
and more. Proper error handling involves using try-catch blocks to catch exceptions, logging error
details, and taking appropriate actions such as rolling back transactions or notifying users.

**Question 10: Describe the benefits of using advanced JDBC concepts like connection pooling and
transaction management in real-world applications.**

Answer: Connection pooling optimizes resource utilization by reusing connections, enhancing
application performance. Transaction management ensures data integrity and consistency, allowing
safe execution of multiple SQL statements as a single unit of work. These concepts collectively improve
application efficiency, scalability, and maintainability.

